FireStation.

La biblioteca del parque.

  • nuevos mensajes por correo.

    Únete a otros 659 seguidores

  • Archivos

  • Estadísticas del blog

    • 1,820,294 hits
  • Visitas

  • Meta

Archive for the ‘Prevencion’ Category

Malos Humos

Posted by Firestation en 07/06/2017

Esta entrada comprende la recopilacion de varios articulos publicados originalmente en FuegoLab http://fuegolab.blogspot.com.es/ Bitácora de divulgación científica sobre incendios forestales y experimentos de combustión en laboratorio.
Por su especial interes y claridad de explicaciones me ha parecido relevante incluirlo aqui para mayor conocimiento de todos aquellos que trabajamos en los fuegos forestales.

¿Alguien cabreado en la sala? Mejor dicho ¿alguien no está cabreado en la sala? Con los tiempos que corren lo habitual es estar de mal humor y sin quererlo ni beberlo nos convertimos por momentos en “mala gente”, gente con “malos humos” ¿Y qué pasa cuando inhalamos humo? ¿es suficiente para perder la capacidad de análisis, de razonar, de dejar de “ser humano” para convertirnos en un juguete de nuestro entorno? Igual que nos ocurre con la “contaminación mediática” los bomberos forestales se tienen que enfrentar en su trabajo con malos humos, pero nada de humos metafóricos, humos nocivos de verdad, que en casos extremos pueden afectar a su capacidad de trabajo, poniendo en peligro sus vidas.
Humo procedente de quema prescrita ejecutada por @briflubia

El peligro para la salud por inhalación de humos en bomberos urbanos es un tema bastante estudiado debido al peligro inherente que presenta este colectivo cuando se enfrenta a incendios en estructuras. Los productos que se pueden llegar a inhalar son en muchas ocasiones desconocidos y en la mayoría de los casos peligrosos para la salud. Sin embargo es una problemática poco estudiada en el caso de los bomberos forestales, cosa sorprendente habida cuenta que estos profesionales nunca disponen de equipo autónomo. Los que hayáis visto la serie documental La Vida en Llamas, os acordaréis que muchos de los comentarios de los bomberos forestales hablando de la dureza del trabajo, relataban episodios de fatiga extrema y síntomas como dolores de cabeza, irritación de ojos y garganta, aumento de mucosidad, etc. Tanto la fatiga como el resto de los síntomas directos están relacionados con la inhalación de humos o gases procedentes de la combustión de la vegetación, interaccionan durante el incendio y se prolongan al día siguiente incluso días posteriores al mismo, provocando falta de sueño y por tanto aumentando el riesgo de fatiga en salidas posteriores. Pero ¿por qué ocurre esto? ¿qué productos tiene el humo procedente de un incendio forestal que lo hace tan nocivo? ¿qué efectos puede tener en la salud? ¿se pueden reducir los riesgos para los combatientes? ¿existe peligro de enfermedades profesionales por esta causa?

Ejecución de quema prescrita bajo arbolado
(BRIF de Lubia, Soria, @briflubia Foto: Laboratorio de incendios forestales INIA)

Mi profesor de la Universidad de Córdoba y ahora compañero en trabajos de investigación, Francisco Rodríguez y Silva (@fcorysilva), me pasó recientemente un trabajo pionero en este tema coordinado por el USDA Forest Service (@forestservice) y la Universidad Johns Hopkins: “The effects of forest fire smoke on Firefighters“. Este estudio data de febrero de 1989 y surgió, como muchas de las investigaciones posteriores en otros campos, a partir del trágico incendio de Yellowstone de 1988 cuando la alarma social por los efectos del humo en la salud de residentes y combatientes fue objeto de debate en todo el mundo. La revisión que se hizo en este trabajo se ha repetido y mejorado en trabajos posteriores pero muchas de las preguntas planteadas siguen aún sin una respuesta.

¿Qué hay en el humo?
Los principales componentes del humo emitido por la vegetación son el Dióxido de Carbono (CO2) y el vapor de agua (H2O) durante la fase de llama y el monóxido de carbono (CO) en la fase de rescoldo (combustión sin llama). Para mostrarlo, aquí tenéis la evolución de la curva de calor emitido (HRR) por una muestra de jara sometida a una radiación fuerte y la evolución de CO2 y CO en el mismo ensayo. Se puede comprobar que la mayoría del dióxido de carbono se emite durante la combustión con llama y la mayoría del monóxido de carbono durante la fase de rescoldo sin llama.
Fuente: Fernández-Gómez et al. 2010

El 90% del carbono emitido durante la combustión de la vegetación es por tanto CO2 y CO. Entonces ¿qué es el resto del humo? Antes de la ignición se generan gran cantidad de gases volátiles denominados en la literatura científica como VOCs (Volatile Organic Compounds), algunos de ellos responsables del proceso de ignición por su bajo punto de inflamación, como hemos hablado en anteriores entradas. También incluye compuestos como el etano, propano, acetileno, metanol, acetona, etc., todos ellos a muy baja concentración (menos del 2% del total de gases) pero alguno de ellos como el benzopireno reconocidos productos cancerígenos. Durante la fase de llama además del CO2 se emiten también óxidos y ácidos de nitrogeno (NOx, HNO)  y otros aerosoles. El siguiente gas en importancia tras el CO y el CO2 en el total de la mezcla de gases es el metano (CH4) que se emite básicamente en fase de rescoldo, junto con el amonio (NH3) y el óxido de azufre (SO2). La combustión incompleta de la vegetación genera además gran cantidad de hidrocarburos (aldehidos, acroleina, benceno) responsables de la mayoría de los síntomas de irritación que perciben los bomberos. Asociado al rescoldeo se encuentra también la combustión de la materia orgánica del suelo que genera calentamiento del suelo mineral y la posible generación de cristales de silicio, productos altamente peligrosos para la salud.

El oxígeno del aire propicia la combustión de la vegetación en presencia de una fuente de calor. Los gases más abundantes en el humo resultante son el dióxido de carbono en la fase de llama y el monóxido de carbono y metano en la fase de rescoldo  Fuente
Hasta ahora hemos hablado de los gases “invisibles” que contiene el humo, pero el humo lo podemos ver debido a lo que se denominan partículas en suspensión o “materia particulada” en la literatura anglosajona (PM , Particulate Matter). Estas partículas se suelen clasificar por clases de tamaños en partículas gruesas de más de 10 micras (materia sedimentable no respirable), materia en suspensión de menos de 10 micras (Fracción inhalable PM10) y partículas finas de menos de 2,5 micras (fracción traqueobronquial PM2.5) que llegan hasta los pulmones. Para los combustibles forestales las partículas PM2.5 representan aproximadamente el 70-80% del total, lo que muestra la peligrosidad de este “humo visible” al penetrar en el organismo de los combatientes, en gran medida responsable de los síntomas de irritación de las mucosas y aumento del cansancio. No hay muchos estudios sobre su composición en combustibles forestales pero básicamente son carbono orgánico (entre 37-65%) y el resto son partículas de menos de 1 micra (PM1) que llegarían hasta los alveolos pulmonares compuestos de Carbono elemental y trazas de iones y metales solubles en el vapor de agua.
Comparación de los tamaños más frecuentes de las partículas del humo en suspensión Fuente
Penetración de partículas en suspensión procedente del humo en el organismo en función de su tamaño. Fuente


¿Qué efectos tiene el humo sobre la salud de los bomberos forestales?

Los efectos potencialmente más graves de acuerdo con la composición de los humos son:

(1) Intoxicación por CO, que afecta al comportamiento neurológico del cerebro y por tanto a la capacidad de toma de decisiones en situaciones de estrés. Las consecuencias son imprevisibles pero lo más descrito son heridas o accidentes graves como consecuencia de la falta de coordinación, fatiga o errores en la toma de decisiones que lleven al bombero a un accidente que pueda llegar a provocar lesiones graves.
(2) Enfermedades pulmonares, cardíacas o incluso cáncer consecuencia de la acumulación de sustancias nocivas en el organismo
(3) Trastornos en las mucosas como consecuencia de la inhalación de hidrocarburos (aldehídos, bencenos) y partículas en suspensiónEsto es lo que “potencialmente” podrían provocar los “malos humos” en función de los compuestos tóxicos que hemos comentado. Pero todo proceso de exposición a riesgos para la salud depende del tiempo de exposición y la concentración del contaminante ¿qué sabemos sobre la exposición de los bomberos forestales a los humos procedentes de la combustión? Como hemos comentado, no hay muchos estudios sobre las concentraciones y tipos de compuestos emitidos por el humo de incendios forestales o quemas prescritas, ni del efecto directo de los humos en la capacidad de trabajo de los bomberos forestales y los posibles efectos a corto y medio plazo sobre su salud. Vamos a comentar los datos que se conocen al respecto

Los estudios más detallados sobre la concentración de gases procedentes del humo en incendios o quemas prescritas provienen del USDA Forest Service (EEUU) y del Bushfire CRC (Australia). En Europa se han descrito humos procedentes de quemas prescritas en Italia y Portugal. En España se llevó al cabo el proyecto CREIF en el que se estudió exhaustivamente el esfuerzo del trabajo de los bomberos forestales BRIF aunque la exposición a humos no se estudió tan al detalle como en otros países. Todos los estudios concluyen que los humos alcanzan valores muy altos, en muchos casos por encima de los valores legales recomendados, al menos puntualmente, para sustancias como el NO2 y el SO2 y sobre todo la materia en suspensión, en particular las PM2.5. Sin embargo, los seguimientos realizados a los bomberos mediante aparatos de monitoreo, muestran que es el CO, los gases irritantes (formaldehido, acroleina) y las PM2.5, los contaminantes que superan con más frecuencia los tiempos y concentraciones de exposición recomendables. Además el CO se ha mostrado como un buen predictor del resto de los contaminantes con lo que se recomienda el uso de monitores de CO calibrados para poder estimar la exposición a otros gases peligrosos.
Relación entre la concentración de CO y formaldehido en el humo inhalado por bomberos forestales Fuente

Como comentamos anteriormente, el CO, los hidrocarburos irritantes y las partículas en suspensión son más abundantes en la fase de rescoldo (combustión sin llama). Por tanto y paradójicamente, la exposición a humos tóxicos puede ser mayor y más peligrosa en la fase de final de la extinción donde se están sofocando zonas incandescentes y focos secundarios. Esto se hace extensible a las quemas prescritas, donde alguno de los estudios mostrarían que los puestos de vigilancia del perímetro exterior, encargados además de la sofocación de posibles escapes, son los puestos de trabajo más sensibles. En una revisión realizada en Australia para explorar la relación e interacciones entre humo, calor y falta de sueño en el rendimiento y esfuerzo de los bomberos forestales, se mostró que la disminución en la capacidad cognitiva no se ve reducida hasta que se alcanza al menos un 25% de CO en la hemoglobina sanguínea, que es el límite máximo que se ha recogido en incendios, con lo que no se prevé que en condiciones normales exista una alteración por esta causa. Esto coincide con los estudios realizados en España en el proyecto CREIF donde no se observaron exposiciones de CO preocupantes. Sin embargo sí encontramos muestras de cansancio extremo e irritaciones que podrían deberse a la presencia de formaldehido y PM2.5 así como a la combinación de ambos con el aumento de la temperatura basal, que en algunos casos llega a los 40ºC. Muchos bomberos relatan que tras estos episodios de extinciones con una fuerte exigencia física y mental, no duermen bien en los días siguientes al incendio. Estos efectos se pueden acumular a lo largo del campaña, con lo que podrían existir interacciones entre falta de sueño, calor extremo y exposición a humos que disminuirían la capacidad de trabajo y de recuperación de los bomberos. No hay estudios fisiológicos al respecto que demuestren la interacción entre estos tres factores de estrés, pero en un estudio de 1991 en EEUU, se entrevistó a 52 bomberos forestales al principio y a final de campaña, sobre los síntomas percibidos después de un incendio (irritación de mucosas, dolores de cabeza, dificultades respiratorias, etc.). En todas ellas hubo un aumento significativo del número de horas tras el incendio en el que percibían estos síntomas, pasando de entre 12 y 24 horas a principios de campaña hasta 48 horas a finales de campaña. Evidentemente esto no demuestra la relación causa-efecto pero sí denota un posible efecto acumulativo de la exposición a los diferentes tipos de estrés. De igual forma la exigencia física que supone la extinción de un incendio no se debe exclusivamente al esfuerzo realizado, sino a las condiciones de estrés en el que se realiza. Un estudio de la Universidad de León sobre una muestra de 160 bomberos forestales BRIF mostró que la exigencia física durante los incendios depende principalmente de su duración. Así un incendio de 3 horas sería equivalente al esfuerzo realizado por un atleta de élite haciendo un media maratón y un incendio de más de 5 horas equivale al que realiza un ciclista profesional en la etapa reina del Tour de Francia. Nos queda por dilucidar en qué medida este esfuerzo titánico de los bomberos forestales se puede ver disminuido por los diferentes factores de estrés y si la inhalación de humos a lo largo de la vida laboral puede o no acarrear enfermedades profesionales.

Fuente

¿Qué se puede hacer para prevenir los riesgos?

A la vista de que los riesgos más demostrados son la exposición a CO y materia en suspensión, el uso de mascarillas de protección podría ser una solución aunque poco viable en incendios forestales donde la exigencia física es mayor y donde las mascarillas podrían restar capacidad pulmonar y por tanto capacidad de trabajo. Sin embargo su uso en quemas prescritas donde la exigencia física durante la quema es reducida, parece una solución razonable que evitaría la exposición a riesgos innecesarios, sustituyendo a las actuales “bragas” de tela o de nomex que se han mostrado ineficaces para evitar la penetración del CO y las PM2.5. También se han citado como posibles soluciones cambios en los sistemas organizativos del dispositivo, como disminuir la duración de los turnos para con ello disminuir el tiempo de exposición a humos, por ejemplo limitando a una exposición máxima de 8 horas. En el caso de quemas prescritas se puede planificar la prescripción para no disponer a bomberos en la dirección de la columna de convección, refrescando previamente la zona de posible caída de pavesas y evitando con ello exponer a los bomberos al humo o a la necesidad de apagar focos secundarios. Por supuesto es fundamental que los servicios forestales tomen la iniciativa de otros países como EEUU y Australia, monitorizando a los trabajadores, al menos con sensores de CO, para poder planificar y predecir la exposición a humos de otros compuestos potencialmente peligrosos muy correlacionados con el CO, reduciendo así el riesgo de enfermedades profesionales debidas a esta causa y proponiéndose con ello medidas preventivas.

Mejoras de los sensores de CO de bajo precio para estimar
la exposición a humos de los bomberos forestales

Como vemos son propuestas algo precarias y lejos de ser definitivas. Cuando decimos que ser bombero/a forestal es una profesión de riesgo, no sólo es por el riesgo a quemarse. Por tanto que nadie se extrañe si a los bomberos les tocan lo que es suyo y responden con “malos humos”…están en su derecho.

Experimento de exposición a humos en fuegos forestales

Bomberos de la Comunidad de Madrid está llevando a cabo un proyecto pionero en España en el que se pretende caracterizar la exposición real a humos de bomberos con una serie de pruebas experimentales entre las que es necesario trabajar con fuego real. Para ello se diseñó esta experiencia en San Martín de Valdeiglesias (Madrid, España) en la que colaboraron Agentes Medioambientales y Bomberos Forestales de la Comunidad de Madrid. En el INIA pusimos nuestro granito de arena.

Los bomberos forestales están expuestos a una serie de compuestos químicos perjudiciales para la salud procedentes del humo. La imposibilidad de poder trabajar en el monte con equipo autónomo genera incertidumbre de la exposición real de estos trabajadores a los agentes nocivos y por ello es imprescindible evaluar qué compuestos presentes son los más abundantes y peligrosos y a qué tiempo de exposición real a los mismos están sometidos en el desarrollo normal de su trabajo. En el USDA Forest Service en EEUU desarrollaron estudios hace más de 10 años y en España hay algún antecedente del proyecto CREIF (TRAGSA) sobre evaluación de exposición a monóxido de carbono, pero no se ha hecho nada tan exhaustivo como los estudios realizados en EEUU, Canadá y recientemente en Francia. Las pruebas preliminares confirman la alta concentración en el humo de agentes nocivos peligrosos para la salud como el formaldehido y el monóxido de carbono (CO). El CO está presente en todas las fases de la combustión pero fundamentalmente en aquellas en las que la combustión es incompleta o sin llama (rescoldeo). Además se han obtenido buenas correlaciones entre el CO y otros compuestos peligrosos para la salud. Como ya comentamos en Malos Humos, una línea prometedora de desarrollo puede ser incluir alarmas en sensores de CO (más económicos y duraderos que los sensores de otros gases nocivos) que puedan llevar los equipos de extinción. De esta manera no sólo alertarían sobre la presencia y concentración del propio CO sino de otras sustancias nocivas sin más que incluir en el software los correspondientes modelos de correlación entre gases. Esto tendría implicaciones en la mejora de la organización del trabajo, tanto en incendios como en quemas prescritas, para disminuir en lo posible las dosis y tiempos de exposición a humos en el desarrollo del trabajo de los bomberos forestales. Ampliaremos estas cuestiones en el II Encuentro Nacional de Bomberos Forestales que tendrá lugar en El Espinar (Segovia) el próximo 13 de mayo y podréis comentarlo con nosotros en persona.

Y como no os quería dejar con las ganas he preparado uno de mis vídeos caseros para mostraros el experimento de San Martín de Valdeiglesias. Como veréis hicieron tres equipos de dos personas cada uno, más el conductor del camión que se quedó como testigo. Un equipo trabajó en la posición favorable, detrás de las llamas, otro equipo trabajó a sotavento, en la posición desfavorable, con una exposición extrema al humo, para lo cual iban equipados con equipo autónomo. El tercer equipo se incorporó para las labores de remate y liquidación. Las 7 personas se monitorizaron con sensores de humo (formaldehido y monóxido de carbono) y con termopares para control de temperatura. Los resultados están aún en fase de análisis. Aquí tenéis el aperitivo:

Posted in Incendios Forestales, Monografias / Articulos / Investigaciones, Prevencion, Salud Laboral. Prevencion de riesgos | Leave a Comment »

Golpe de calor

Posted by Firestation en 06/02/2017

golpe-de-calor

Por James P. Knochel, MD, University of Texas, Southwestern Medical Center at Dallas;Presbyterian Hospital of Dallas

El golpe de calor (fiebre térmica, acaloramiento, termoplegía) es la hipertermia que se acompaña de una respuesta inflamatoria sistémica que produce disfunción multiorgánica y, con frecuencia, la muerte. Los síntomas incluyen temperatura > 40° C y alteración del estado mental; usualmente, no hay sudoración. El diagnóstico es clínico. El tratamiento es un refrescamiento externo rápido, reposición de líquidos IV y el apoyo necesario por las insuficiencias orgánicas.

El golpe de calor se produce cuando los mecanismos termorreguladores no funcionan y aumentan sustancialmente la temperatura central. Se activan citocinas inflamatorias y puede producirse insuficiencia multiorgánica. Las endotoxinas de la flora digestiva también pueden participar de este cuadro. La insuficiencia orgánica pueden afectar el SNC, el músculo esquelético (rabdomiólisis), el hígado, los riñones, los pulmones (síndrome de dificultad respiratoria aguda) y el corazón. Se activa la cascada de coagulación y a veces se produce una coagulación intravascular diseminada. Puede haber hiperpotasemia e hipoglucemia.

Existen 2 variantes:

  • Clásica

  • De esfuerzo

El golpe de calor clásico toma de 2 a 3 días de exposición en aparecer. Se produce durante las horas de calor de verano, en general en ancianos, personas sedentarias que no tienen aire acondicionado y, con frecuencia, con un acceso limitado a los líquidos.

El golpe de calor por esfuerzo se produce de manera súbita en personas sanas activas (p. ej., atletas, reclutas militares, trabajadores de fábricas). Un ejercicio intenso en un entorno cálido produce una carga térmica masiva y súbita que el cuerpo no puede modular. Es frecuente la rabdomiólisis; la insuficiencia renal y la coagulopatía son algo más probables y graves.

Algunas diferencias entre el golpe de calor clásico y el de esfuerzo
Características Golpe de calor clásico Golpe de calor por esfuerzo
Inicio 2–3 días Horas
En general afecta a pacientes Ancianos, personas sedentarias Personas saludables (p. ej., atletas, reclutas militares, trabajadores de fábricas)
Factores de riesgo Sin aire acondicionado durante olas de calor en el verano Ejercicio intenso, en particular sin aclimatación
Piel Caliente y seca A menudo, húmeda de sudor

Puede producirse un síndrome similar al golpe de calor después de usar ciertos fármacos (p. ej., cocaína, fenciclidina, anfetaminas, inhibidores de la monoaminooxidasa). Habitualmente es necesaria una sobredosis, pero el ejercicio y las condiciones ambientales pueden ser aditivos.

En pacientes con predisposición genética puede producirse una hipertermia maligna por la exposición a algunos anestésicos. En pacientes que toman antipsicóticos puede aparecer un síndrome neuroléptico maligno. Estos trastornos son potencialmente mortales; la hipertermia maligna tiene una tasa de mortalidad elevada.

Signos y síntomas

 

La característica distintiva es la disfunción global del SNC, que va de la confusión al delirio, las convulsiones y el coma. Son frecuentes la taquicardia (incluso con el paciente en decúbito supino) y la taquipnea. En el golpe de calor clásico, la piel está caliente y seca. En el golpe de calor por esfuerzo, la sudoración es relativamente común. En ambos casos, la temperatura es > 40°C y puede ser> 46°C.

Diagnóstico

  • Evaluación clínica, incluida medición de la temperatura central

  • Análisis de laboratorio

 

El diagóstico suele ser evidente a partir de un antecedente de ejercicio y calor ambiental. El golpe de calor se diferencia del agotamiento por calor por la presencia de:

  • Mal funcionamiento del SNC

  • Temperatura > 40°C

 

Cuando el diagnóstico de golpe de calor no es obvio, deben considerarse otros trastornos que causan un mal funcionamiento del SNC e hipertermia. Estos trastornos pueden ser los siguientes:

  • Infección aguda (p. ej., sepsis, paludismo, meningitis, síndrome del shock tóxico)

  • Fármacos

  • Síndrome neuroléptico maligno

  • Síndrome serotoninérgico

  • Estado epiléptico (interictal)

  • Accidente cerebrovascular

  • Crisis tiroidea

 

Los estudios de laboratorio incluyen hemograma completo, evaluación de y PTT, electrolitos, BUN, creatinina, Ca, CK y perfil hepático para determinar la función orgánica. Se coloca una sonda vesical para obtener orina, que se analiza para detectar sangre oculta mediante una tira reactiva y para monitorizar la diuresis. Los análisis para detectar mioglobina no son necesarios. Es deseable la monitorización continua de la temperatura central, habitualmente con una sonda rectal o esofágica.

Pronóstico

 

La mortalidad es elevada, pero varía mucho con la edad, los trastornos subyacentes, la temperatura máxima y, lo que es más importante, la duración de la hipertermia y la rapidez del refrescamiento. Aproximadamente el 20% de los supervivientes sufren una lesión cerebral residual. En algunos pacientes, persiste la insuficiencia renal. La temperatura puede ser lábil durante semanas.

Tratamiento

  • Refrescamiento intensivo

  • Solución salina IV normal enfriada

 

Lo más importante es el reconocimiento rápido y el refrescamiento intensivo y eficaz. Se prefieren los métodos de refrescamiento que no produzcan escalofríos ni vasoconstricción cutánea, aunque las toallas mojadas con hielo y la inmersión en agua con hielo son eficaces.

Técnicas de refrescamiento

 

El refrescamiento mediante evaporación es cómodo y conveniente, y algunos expertos consideran que es el método más rápido. Durante este proceso, se humedece continuamente a los pacientes con agua, y la piel se abanica y se masajea para favorecer el flujo sanguíneo. Lo mejor es una manga con un rociador y ventiladores grandes y pueden usarse para grupos grandes de personas en el campo. Es adecuada agua tibia (p. ej., 30°C) porque la evaporación produce refrescamiento; el agua fría o helada no es necesaria. También puede usarse en el campo la inmersión en agua fría en un estanque o en un arrollo.

 

Se pueden usar paquetes de hielo aplicados en las axilas y las ingles, pero no como único método de refrescamiento. En los casos potencialmente mortales, se ha propuesto envolver al paciente en hielo, con una estrecha monitorización, para reducir rápidamente la temperatura central.

Otras medidas

 

El paciente es ingresado en una UTI y se comienza la hidratación IV con solución salina al 0,9% como en el agotamiento por calor. En teoría, de 1 a 2 L de solución salina IV al 0,9% enfriada a 4°C, como se utiliza en los protocolos para inducir hipotermia después de un paro cardíaco, también puede ayudar al refrescamiento. Se trata la disfunción de otros órganos y la rabomiólisis (véase en otra parte Del Manual). Se pueden usar benzodiazepinas inyectables (p. ej., loracepam, diacepam) para prevenir la agitación y las convulsiones (que aumentan la producción de calor); pueden producirse convulsiones durante el enfriamiento. Como es posible que haya vómitos con aspiración del contenido gástrico, pueden ser necesarias medidas para proteger las vías aéreas. Los pacientes muy agitados pueden precisar relajantes musculares y ventilación mecánica.

 

Pueden ser necesarias plaquetas y plasma fresco congelado para la coagulación intravascular diseminada grave. La administración de NaHCO3 IV para alcalinizar la orina puede ayudar a prevenir la nefrotoxicidad si hay mioglobinuria. Pueden requerirse sales de calcio intravenosas para tratar la cardiotoxicidad hipercalémica. Los vasoconstrictores que se utilizan para tratar la hipotensión pueden reducir la pérdida calórica. Puede ser necesaria una hemodiálisis. Los antipiréticos (p. ej., paracetamol) no son útiles. Para tratar la hipertermia maligna inducida por anestésicos se utiliza dantroleno, pero no ha resultado útil en otras causas de hipertermia grave.

Agotamiento por calor

El agotamiento por calor es un síndrome clínico sin riesgo mortal que cursa con debilidad, malestar, náuseas, síncope y otros síntomas inespecíficos producidos por la exposición al calor. La termorregulación no está alterada. Se deben reponer líquidos y electolitos por vía intravenosa.

El agotamiento por calor (agotamiento térmico, postración por calor, postración térmica; a veces llamado también “insolación”) se debe a un desequilibrio de agua y electrolitos causado por exposición al calor, con o sin ejercicio.

Rara vez, el agotamiento por calor grave después de un trabajo pesado puede complicarse con rabdomiólisis, mioglobinura, insuficiencia renal aguda y coagulación intravascular diseminada.

Signos y síntomas

 

Con frecuencia, los síntomas son imprecisos y los pacientes pueden no darse cuenta de que la causa es el calor. Los síntomas pueden incluir debilidad, mareo, cefaleas, náuseas y, a veces, vómitos. Es usual el síncope por estar de pie períodos prolongados bajo el calor (síncope por calor) y puede simular un trastorno cardiovascular. En el examen físico, los pacientes tienen aspecto cansado y habitualmente están sudorosos y taquicárdicos. En general, el estado mental es normal, al contrario que en el golpe de calor (fiebre térmica, acaloramiento, termoplegía). La temperatura en el agotamiento por calor habitualmente es normal, y cuando está elevada no supera los 40° C.

Diagnóstico

  • Evaluación clínica

 

El diagnóstico es clínico y requiere exclusión de otras posibles causas (p. ej., hipoglucemia, síndrome coronario agudo, diversas infecciones). Las pruebas de laboratorio se realizan sólo si es necesario para descartar estos trastornos.

Tratamiento

  • El reemplazo de electrolitos y líquidos IV

El tratamiento supone trasladar a los pacientes a un entorno fresco, hacer que se acuesten y administrar tratamiento de reposición de líquidos y electrolitos IV, habitualmente una solución salina al 0,9%; la rehidratación oral no aporta los electrolitos suficientes. La velocidad y el volumen de la rehidratación están guiados por la edad, los trastornos subyacentes y la respuesta clínica. Con frecuencia, es adecuada la reposición de 1 a 2 L a una velocidad de 500 mL/h. Los pacientes ancianos y los que tienen trastornos cardíacos pueden precisar tasas sólo ligeramente menores; en aquellos en los que se sospecha una hipovolemia, pueden ser necesarias velocidades mayores en un inicio. No son necesarias medidas de refrescamiento externo. Sin embargo, si los pacientes con agotamiento por calor tienen una temperatura central de 40° C, deben tomarse medidas para reducirla.

Calambres por calor

Los calambres por calor son contracciones inducidas por el ejercicio que se producen en un ambiente cálido o después de una actividad física.

El esfuerzo puede inducir calambres en un clima frío, pero estos no se relacionan con la temperatura y es probable que reflejen la falta de entrenamiento. Por el contrario, los calambres por calor pueden aparecer en personas bien entrenados que sudan de manera profusa y restituyen el agua perdida pero no la sal, lo que produce hiponatremia. Los calambres por calor son frecuentes en:

  • Trabajadores manuales (p. ej., personal de salas de máquinas, trabajadores del acero, mineros)

  • Reclutas militares

  • Atletas

Los calambres son súbitos y habitualmente se producen en los músculos de los miembros. El dolor intenso y el espasmo carpopedio pueden incapacitar las manos y los pies. La temperatura es normal y los demás hallazgos son poco importantes. Por lo general, el calambre dura de minutos a horas. El diagnóstico se realiza por anamnesis y evaluación clínica.

Tratamiento

 

Los calambres pueden aliviarse de inmediato mediante un estiramiento pasivo firme del músculo afectado (p. ej., flexión plantar en un calambre de la pantorrilla). Se deben reponer líquidos y electrolitos VO (1 a 2 L de agua que contenga 10 g [2 cucharaditas de té rasas] de sal o cantidades suficientes de una bebida deportiva comercial) o IV (1 a 2 L de solución salina 0,9%). Un entrenamiento adecuado, la aclimatación y el tratamiento apropiado del equilibrio salino ayudan a prevenir los calambres.

 

http://www.merckmanuals.com

manual merck

Posted in Prevencion, Primeros Auxilios, Salud Laboral. Prevencion de riesgos | Comentarios desactivados en Golpe de calor

Guia tecnica para la investigacion de accidentes en la extincion de incendios forestales

Posted by Firestation en 08/12/2016

guia tecnica accidentes

Posted in Incendios Forestales, Prevencion, Salud Laboral. Prevencion de riesgos | Comentarios desactivados en Guia tecnica para la investigacion de accidentes en la extincion de incendios forestales

Guia practica para la eliminacion de agentes quimicos en el servicio de extincion de incendios

Posted by Firestation en 06/05/2016

image064ti

Posted in Equipos proteccion, Incendios, Prevencion | Comentarios desactivados en Guia practica para la eliminacion de agentes quimicos en el servicio de extincion de incendios

Consideraciones en torno a los modelos para el estudio de la evacuación de edificios.

Posted by Firestation en 21/03/2016

simulacro

El problema que se aborda en esta tesis es el de la evacuación de edificios de una forma generalizada. El problema radica en que la Totalidad de los ocupantes de un edificio en cualquier instante deben tener la posibilidad de desplazarse hasta un lugar seguro en el tiempo adecuado con las suficientes garantías de seguridad. En principio, las normas de construcción y de seguridad propias de cada ámbito resuelven el problema estableciendo diseños técnicamente correctos.
En esta tesis se estudia el problema desde dos perspectivas distintas: En la primera se establecen los elementos necesarios para pronosticar el posible desarrollo de la evacuación y en la segunda se pretende gestionar directamente la actuación de los ocupantes en situaciones críticas.
El problema de la evacuación de edificios a menudo se asocia a situaciones de emergencia, pero realmente se trata de un problema general, aplicable a gran número de edificios en los que se pueden presentar situaciones de emergencia derivadas de incendios, explosiones, amenazas de bombas, actos antisociales, actuaciones colectivas incontroladas u otras situaciones peligrosas que pueden presentarse en multitud de escenarios. Desde un punto de vista analítico, el problema resulta especialmente relevante cuando se estudian edificios de gran altura, centros comerciales, culturales y recreativos, centros de enseñanza, edificios de geometría compleja, etc… Edificios con circunstancias especiales en su estructura y personales de sus ocupantes, como centros hospitalarios, residencias geriátricas, centros psiquiátricos, o de reclusión no son directamente objeto de los planteamientos generales de este trabajo de investigación.
En esta tesis, en primer lugar se efectúa una exhaustiva recopilación de información, lectura, análisis, clasificación y estudio de los documentos que constituyen el “estado del arte” del problema.
En segundo lugar se determinan los factores que se cree tienen una incidencia significativa en el proceso de la evacuación de un edificio. Se define el sistema de evacuación y se formula una modelización del mismo. Se divide en dos: El problema de la evacuación de un recinto y el de la evacuación de edificios, se estructuran elementos de estudio del mismo y se definen los formatos más adecuados para el análisis y la interpretación de los resultados.
En una etapa posterior, se estudia el problema de la evacuación de un recinto en diferentes condiciones de los factores del propio modelo, la posible ubicación de los ocupantes y el comportamiento en el momento de producirse la señal de alarma. En este estudio se utilizan diferentes modelos de locomoción, modelos de flujo constante y modelos en los cuales las magnitudes de locomoción son función de la ocupación.
En la solución del problema de la evacuación de edificios, además del estudio de idénticas situaciones que en el problema del recinto, se contempla el estudio dinámico de las vías de evacuación, confluencias y ramificaciones, obteniendo soluciones pseudo-óptimas mediante procedimientos heurísticos.
Se desarrolla un proceso de validación del modelo, desarrollando procedimientos robustos que aportan una garantía a las posibles conclusiones. A dichos procedimientos se les ha denominado, análisis de la función de evacuación y análisis de flujos.
Finalmente, se formulan propuestas para mejorar la gestión de la evacuación de los edificios. Se trata de una incursión fuera de las técnicas cuantitativas, presentándose algunos conceptos simples de carácter práctico con los que se puede mejorar notablemente la seguridad de las personas en los edificios.
Se utilizan los modelos y procedimientos propuestos para el estudio de la evacuación de diferentes recintos y edificios, tratando de mostrar el potencial y el cumplimento de los objetivos de la presente tesis. Se documentan el estudio de la evacuación de un edificio destinado a actos sociales y congresos, uno dedicado a actividad industrial y un edificio de uso escolar.

Documentos con el texto completo de esta tesis

Ficheros Tamaño Formato
01Scp01de11.pdf 191.5 KB PDF
02Scp02de11.pdf 232.2 KB PDF
03Scp03de11.pdf 706.2 KB PDF
04Scp04de11.pdf 882.2 KB PDF
05Scp05de11.pdf 525.2 KB PDF
06Scp06de11.pdf 1.323 MB PDF
07Scp07de11.pdf 371.6 KB PDF
08Scp08de11.pdf 210.8 KB PDF
09Scp09de11.pdf 714.3 KB PDF
10Scp10de11.pdf 218.0 KB PDF
11Scp11de11.pdf 736.1 KB PDF

Posted in Edificacion, Monografias / Articulos / Investigaciones, Prevencion, Proteccion civil, Señalizacion Emergencias | Comentarios desactivados en Consideraciones en torno a los modelos para el estudio de la evacuación de edificios.

Tormenta perfecta.

Posted by Firestation en 16/03/2016

Por

 tormentaperfecta 620x268

Hasta en los materiales que se utilizaron para construir sus oficinas, la sustentabilidad fue y es una parte esencial de la idiosincrasia comercial de Organic Valley, una cooperativa de productos lácteos con sede en Wisconsin. Estos materiales presentaron un desafío inesperado durante un incendio.

A mediados del 2013, Philip Stittleburg, jefe del cuerpo de bomberos de La Farge, Wisconsin, y presidente del Directorio de la NFPA en ese entonces, se contactó con la asociación por un incendio que había ocurrido recientemente en su ciudad. El 14 de mayo de 2013, el Cuerpo de Bomberos de La Farge respondió a una alarma de incendio automática de un edificio de oficinas situado en su distrito. Cuando las unidades de socorristas llegaron al lugar, se encontraron con un incendio en un espacio oculto ubicado dentro del edificio. Pero, lo que a primera vista parecía presentarse como una operación de rutina, terminó siendo un incendio de características muy fuera de lo habitual.

Los bomberos pronto se enterarían de que los espacios ocultos del edificio estaban aislados con un material reciclado, hecho de tela vaquera a base de algodón; material este que fue rápidamente consumido por el creciente fuego, que finalmente se propagó hacia un espacio del ático construido con cabriadas de madera liviana y provisto de rociadores automáticos. La estructura del techo inclinado del edificio estaba cubierta con paneles fotovoltaicos (FV) que hacían casi imposible que los bomberos pudieran ventilar verticalmente el espacio del ático.

Durante un plazo que duró 18 horas, los funcionarios y los bomberos de La Farge, junto con aquellos de los diversos departamentos de los alrededores, se enfrentaron a los crecientes desafíos, entre ellos la ubicación del incendio, los materiales utilizados en la construcción del edificio, las limitaciones de la infraestructura para combate de incendios de la ciudad, y muchos más. El incendio finalmente destruiría gran parte del edificio, provocando daños en las propiedades y pérdidas relacionadas por un importe estimado de US$13 millones.

Luego de que el Jefe de Bomberos Stittleburg se contactara con NFPA, y a medida que se conocían más detalles y circunstancias del incendio, más se parecía a un cuento aleccionador sobre el uso de materiales “ecológicos” o “sustentables” en la construcción y lo que pueden significar para las denodadas acciones de los bomberos. La disposición del sistema de paneles FV en la azotea, diseñado para reducir la dependencia en combustibles fósiles del edificio, también presentó serios desafíos para los bomberos. En algunos aspectos, el incidente de La Farge se convirtió en un incendio de tipo “tormenta perfecta”—un incidente que agrupó en un solo hecho, unos cuantos desafíos que había visto en diferentes lugares. NFPA aceptó la invitación del Jefe de Bomberos Stittleburg para visitar La Farge y revisar el incendio. Se me solicitó que viajara a Wisconsin para que viera personalmente cómo estos factores se habían combinado para generar una situación de incendio especialmente desafiante—y evocar las lecciones aprendidas en ese incendio.

El incendio

La Farge es una pequeña comunidad de alrededor de 750 habitantes, ubicada aproximadamente a 42 millas (68 kilómetros) al sudeste de La Crosse, en el sur de Wisconsin. El Cuerpo de Bomberos de La Farge (La Farge Fire Department o LFD) es una organización conformada enteramente por voluntarios: 30 oficiales y miembros que conducen ocho vehículos de una estación ubicada en el centro de la ciudad, bajo el comando del Jefe de Bomberos Stittleburg. Las oficinas de Organic Valley, la cooperativa de productos lácteos orgánicos más grande del mundo, representa tiene un peso económico predominante en la ciudad, con ventas mundiales de aproximadamente US$860 millones en 2012. Según información del sitio web de la cooperativa, organicvalley.coop, la sede de 45,000 pies cuadrados (4,181 metros cuadrados), de tres pisos de altura, fue construida en 2004 por un valor de US$ 5.9 millones y alberga a alrededor de 400 empleados.

El 14 de mayo, a las 16:29, LFD, recibió una alarma de incendio del edificio de oficinas de Organic Valley, en One Organic Way. A las 16:31, el centro de envíos recibió una llamada telefónica de un jefe adjunto de LFD, empleado de las instalaciones, quien confirmaba la presencia de un incendio en el edificio. Los vehículos de LFD llegaron al lugar a las 16:36. El Jefe de Bomberos Stittleburg llegó poco tiempo después y tomó el comando del incidente. Al llegar, el jefe observó que había humo saliendo del ala oeste del edificio, en las cercanías de una escalera. Un ex miembro del cuerpo de bomberos que en ese momento trabajaba para Organic Valley buscó al jefe de bomberos para informarle que se veía humo saliendo del piso de la planta baja y que llegaba hasta la planta del segundo piso, en el sector oeste del edificio. Los ocupantes del edificio habían salido de manera segura.

El edificio consta de dos alas conectadas por un área central de vestíbulos. Mientras los bomberos comenzaban a buscar el asentamiento del fuego por el ala oeste del edificio, notaron que el incendio se propagaba verticalmente en el interior del muro, así como también horizontalmente dentro del muro del ala sur y en el espacio del ático del ala. La propagación interior fue determinada por la decoloración de los paneles de metal del exterior del edificio. Se les dijo a los bomberos que los muros estaban aislados con material de fibra de algodón, compuesta principalmente por tela vaquera cortada.

Los pisos de la estructura estaban construidos con cabriadas de madera paralelas, espaciadas a 24 pulgadas (61 centímetros) del centro. La estructura del techo estaba construida con cabriadas de madera liviana compuestas por componentes de 2 x 12 pulgadas (5 x 30 centímetros), 2 x 8 pulgadas (5 x 20 centímetros) y 2 x 6 pulgadas (5 x 15 centímetros), asegurados con placas de refuerzo de metal. Las cabriadas del techo estaban espaciadas a 7 pies, 6 pulgadas (2.3 metros) del centro y las placas de refuerzo estaban espaciadas a 3 pies, 9 pulgadas (1.1 metros) del centro. La superficie exterior del techo era de paneles de techo de metal con juntas de plegado saliente, que estaban sujetados a las cabriadas del techo. El sistema del techo había sido diseñado para sostener la carga que representaba el sistema de paneles FV.

El edificio estaba equipado con protección con rociadores automáticos en toda su extensión. Los sistemas de rociadores de tubería húmeda instalados dentro de las tres plantas estaban diseñados para 0.10 gpm/pie cuadrado sobre 1,500 pies cuadrados. El sistema de tubería seca con ático estaba diseñado para 0.10 gpm/pie cuadrado sobre 1,950 pies cuadrados. Se incluyeron las asignaciones para chorros de manguera de 250 gpm.

Una segunda autobomba de La Farge arribó al lugar, con la conexión del cuerpo de bomberos para los sistemas de rociadores y así dio apoyo a los sistemas durante todo el incidente. A las 16:37, el comandante del incidente requirió vehículos de bomberos con escaleras para operaciones en altura, así como también bomberos adicionales provenientes de las comunidades cercanas de Viloa y Viroqua.

Los bomberos accedieron al techo inclinado del ala oeste y así pudieron determinar la extensión del sistema de paneles FV. La mayor parte de la superficie del techo situada hacia el sur estaba cubierta por 130 paneles, lo que hacía casi imposible realizar las operaciones de ventilación vertical. El sistema FV tenía una capacidad nominal de 70kW; ese día estaba parcialmente nublado pero con mucho sol, de modo que los paneles habrían alcanzado practiamente su máxima carga. El comandante del incidente ordenó a los bomberos que permanecieran lejos del techo, debido a encontrarse los FV energizados y además por desconocer la condición del sistema de soporte de las cabriadas de madera situadas por debajo. No se intentó la ventilación vertical.

Mientras tanto, por la decoloración de los paneles de metal exteriores, se hacía evidente que el fuego continuaba su recorrido, no solo horizontalmente a través del espacio del ático, sino también verticalmente dentro de los muros del ala. Los bomberos accedieron al espacio del ático a través de una pequeña abertura en el ala este, pero debido a la falta de ventilación adecuada no pudieron permanecer en el espacio del ático por el intenso calor y el humo y se vieron obligados a retroceder.

Desde el interior y exterior del edificio, bomberos continuaron abriendo los espacios ocultos de los muros y cielorrasos, a fin de determinar el recorrido del fuego en estos espacios. A las 17:12 y nuevamente a las 17:17, se requirieron bomberos adicionales de los cuerpos de bomberos contiguos, de Westby y Hillsboro, y a las 17:42, se solicitó al cuerpo de bomberos de Richland Center, otro vehículo con escalera para operaciones aéreas.

También se le requirió a la compañía de energía local, La Farge Public Utility, que aislara la energía eléctrica dentro del complejo, a fin de proteger a los bomberos que estaban trabajando en el intenso incendio. Durante esta operación alrededor de las 18:30, se utilizó un camión canastilla de la compañía de electricidad para observar la condición de los paneles FV del techo del ala oeste.

La estructura del techo había comenzado a mostrar señales de debilitamiento y comenzaron a ocurrir derrumbes localizados en el espacio situado alrededor de los paneles FV. Algunos de estos paneles de FV comenzaban a deformarse y caer en el interior del espacio del ático. Se hizo una lectura para verificar si había corriente eléctrica que estuviera siendo dirigida a través del techo de metal y se detectó el movimiento de 50 voltios de corriente directa moviéndose a través de los paneles de metal, suficiente para una descarga que podría—bajo determinadas circunstancias—poner en riesgo la vida de una persona.

Se hizo evidente que los paneles de FV estaban, en cierta medida, todavía energizados, y que el techo colapsado creaba una vía para que la corriente eléctrica pasara a través de la estructura del techo de metal, energizando los paneles. Esta información fue transmitida al comandante del incidente, quien a su vez se la suministró a las fuerzas de combate de incendios. Si los bomberos se hubieran encontrado trabajando en el techo en ese momento, es muy probable que hubieran sufrido heridas, además de correr un significativo riesgo de perder la vida.

Fueron surgiendo nuevos problemas. Mientras los bomberos continuaban con sus denodadas acciones, a las 18:15 se le notificó al comandante del incidente que había problemas con el suministro de agua proveniente del hidrante del sitio. El hidrante parecía estar funcionando apropiadamente, pero la presión del agua había disminuido de manera significativa desde la llegada de las unidades de los cuerpos de bomberos. Se determinó que un derrumbe parcial de las cabriadas del techo había afectado el sistema de rociadores de tubería seca del espacio del ático, lo que provocó que desde las tuberías rotas cayera agua en el interior del edificio. También se le informó al comandante del incidente que a ese nivel de consumo, el sistema de agua municipal, con una capacidad de 101,000 galones, estaría drenado en 45 minutos.

A las 18:31, se decidió establecer una operación de transporte para el suministro de agua, utilizando camiones cisterna de la región en reemplazo del sistema de agua municipal. Se utilizaron seis cisternas para extraer agua desde el cercano Río Kickapoo y transportarla hasta el sitio del incendio, donde fue transferida hacia un gran tanque de almacenamiento portátil; los camiones autobomba conectaron sus mangueras al tanque portátil para continuar con sus acciones de extinción del fuego. Se apagaron los sistemas de rociadores del segundo piso y de los espacios de áticos, tanto del ala este como del ala oeste, para detener el flujo de agua desde las tuberías rotas.

El fuego continuaba consumiendo el ala oeste del edificio. A las 20:08 se pidieron recursos adicionales para el combate del incendio a los cuerpos de bomberos de Yuba y a las 20:14 al de Coon Valley, y nuevamente a las 00:17 al de Stoddard y a las 00:29 al de Cashton. Las acciones de supresión finalmente se focalizaron en el área central del edificio, cerca del vestíbulo, con la intención de contener el incendio en el ala oeste y evitar que se propagara al vestíbulo y a un ala de oficinas similar situada en el lado este.

Con el derrumbe parcial del techo del ala oeste y la subsiguiente ventilación del fuego, del humo y de los gases, las dotaciones de bomberos pudieron acceder al ático y extinguir el incendio que estaba recorriendo todo ese espacio. Las acciones de extinción cobraron impulso en todos los tres pisos. Se determinó que las operaciones de revisión y reacondicionamiento continuarían durante la noche y las dotaciones rotarían en turnos de tres horas durante la noche y hasta el día siguiente.

El incidente se declaró como controlado el 15 de mayo a las 10 de la mañana—casi 18 horas después de haberse recibido la alarma desde Organic Valley. En el incendio habían participado 116 bomberos y personal de emergencias médicas, junto con 31 vehículos, de 10 comunidades diferentes.

No solo por los paneles FV: un análisis del incendio de Organic Valley

A principios de junio del 2013 viajé a La Farge para investigar el incendio de Organic Valley. Incluso antes de partir hacia Wisconsin, comencé a hacer una lista de preguntas, que esperaba encontrarían respuesta mientras estaba allí. Ciertamente el rol del sistema de paneles FV ocupaba uno de los primeros lugares en mi lista, ya que habían sido destacados en las fotografías del incendio y sus secuelas. Sin embargo una vez que me encontré en el escenario, y mientras hacía las entrevistas y me informaba mejor sobre el incidente, se me hacía evidente que los paneles FV eran tan solo un aspecto de los desafíos con los que se habían enfrentado los socorristas en mayo.

Entrevisté al Jefe de Bomberos Stittleburg y otros miembros del cuerpo de bomberos, y hablé con los investigadores del cuerpo de bomberos y con la compañía de seguros de Organic Valley. Todos se mostraron preocupados por los paneles FV, ya que eran los que habían mantenido a los bomberos alejados del techo y contribuido a su derrumbe y a la subsiguiente energización de los paneles de metal del techo. Pero también planteaban interrogantes sobre los elementos de construcción de peso liviano del edificio; aunque el techo estaba diseñado para soportar el peso de los paneles FV, se cuestionaban el tiempo que les llevó a esos elementos de peso liviano caer, y derivar en un derrumbe.

El recorrido del fuego también fue un elemento de gran preocupación; se había informado que el incendio había comenzado en el interior del muro del extremo del ala oeste—fuera del alcance de los rociadores— y se había trasladado vertical y horizontalmente en el interior de los muros, hasta finalmente afectar toda el ala. Ese patrón de recorrido planteó interrogantes acerca de la combustibilidad del aislamiento de tela vaquera-algodón, así como también interrogantes sobre la presencia, y efectividad, de los elementos de bloqueo contra el fuego del interior de los muros. Fue evidente que diversos métodos, materiales y sistemas de construcción “ecológicos” o “sustentables” habían contribuido a un incendio peligroso, de grandes dimensiones.

CONSTRUCCIONES DE PESO LIVIANO

Actualmente es habitual el uso de una construcción del tipo de peso liviano en todas las clases de edificios. El uso de componentes estructurales de madera de obra y de metal “diseñados mediante ingeniería” se comercializa como más respetuoso con el medio ambiente (y también como más económico) que el uso de madera de obra dimensionada y puede encontrarse en muchos tipos de ocupaciones. Si quedan desprotegidos, estos elementos de peso liviano pueden caer mucho más rápido que los de madera dimensionada cuando están expuestos al fuego, lo que aumenta el riesgo de muerte o lesiones en los bomberos y los ocupantes de edificios. Las cabriadas del techo de Organic Valley estaban construidas con este método de peso liviano, y su eventual derrumbe provocó la rotura de las tuberías de los rociadores situadas en el ático, lo que derivó en grandes extracciones del suministro de agua durante las acciones de supresión de incendios.

Durante años, los bomberos han conocido los potenciales riesgos representados por los componentes estructurales desarrollados mediante ingeniería y las características de las construcciones de peso liviano. Aun así, es necesario que los bomberos sepan que podría haber un potencial derrumbe cuando dichos componentes estructurales se ven involucrados o expuestos al fuego. El conocimiento de las características de construcción de edificios, mediante la planificación previa a un incendio, recorridos e inspecciones de los edificios, le permite a los bomberos y oficiales del cuerpo de bomberos diseñar en plazos más cortos, su estrategia y tácticas que tomen en cuenta la rápida propagación del incendio y el potencial de un derrumbe en edificios con construcciones de peso liviano.

AISLAMIENTO DE FIBRAS NATURALES O COMPONENTES DEL EDIFICIO

Organic Valley se enorgullece de su compromiso con la sustentabilidad ambiental y no solamente de los productos que comercializa. Su sitio web incluye un informe detallado sobre este compromiso , en el que se remarca el uso de las fuentes de viento y energía solar, que utiliza la cooperativa y además cita que el 32% del combustible utilizado por su flota local, es aceite vegetal puro o de base biológica; y tienen como meta para antes del 2015, que sea el 60%.

Lo mismo es válido para su sede de La Farge. En el sitio web de la cooperativa se incluye una lista de las numerosas características “biológicas” del edificio, desde tecnologías de ahorro de energía hasta materiales de construcción con bajo contenido de compuestos orgánicos volátiles, que pueden afectar la calidad del aire. Se utilizaron diversos materiales renovables y reciclados en la construcción del edificio de Organic Valley, incluido el material de aislamiento, que fue fabricado con tela vaquera reciclada post-consumo y tratado con un moho e inhibidor de moho no tóxico.

El material de fibra de algodón tiene un valor aislante similar al de los aislamientos de fibra de vidrio convencionales pero a diferencia de estos últimos que no son combustibles el material de fibra de algodón resulta combustible en determinadas condiciones. En Organic Valley, el aislamiento de algodón desempeñó un importante rol en el recorrido del fuego por los espacios ocultos de muros y cielorrasos. La bibliografía de los productos indica que el material de aislamiento tiene una “certificación contra el fuego de Clase A”—más específicamente, la bibliografía cita una certificación superior de “Clase 1” para la propagación de las llamas, según la prueba descripta en ASTM E84 y una certificación superior de “Clase 1” en la prueba de humo descripta en UL 723, aunque estas pruebas en realidad solamente aplican certificaciones de Clase A, B o C. También es posible que estas pruebas puedan no ser las correctas para aplicar a este material en particular. La bibliografía de los productos no especifica si el material de aislamiento había sido tratado con retardador de llama.

El uso de materiales aislantes de fibras naturales es cada vez más frecuente como un medio para cumplir con los requisitos de las “construcciones ecológicas”. Los bomberos necesitan saber cuándo este tipo de aislamiento se utiliza dentro de un edificio, debido a que el potencial recorrido del fuego en espacios verticales y horizontales tendrá que ser tomado en cuenta.

SISTEMAS FV

Actualmente, en el campo de la construcción de edificios, resultan relativamente nuevas las instalaciones de sistemas de paneles FV en, sobre y alrededor de muchos tipos de estructuras. Los cuerpos de bomberos se encuentran con estos sistemas de paneles en las azoteas de todo tipo de ocupaciones, desde viviendas unifamiliares hasta en grandes edificios industriales. Los sistemas pueden ser tan pequeños como de unos pocos paneles que complementan el sistema eléctrico de un edificio, o tan grandes como cientos de paneles diseñados para suministrar energía a las instalaciones, así como también para su reventa a la compañía del servicio público local.

Una importante consideración, en especial para los bomberos, es saber y tener en cuenta que mientras sigan recibiendo una considerable cantidad de luz, los paneles FV pueden continuar generando energía eléctrica. La interacción de los bomberos alrededor o debajo de los paneles—especialmente en las condiciones desfavorables, por la presencia de humo y gases calientes, asociadas con el combate de incendios—hace que el desarrollo de las tareas en las cercanías de sistemas de paneles FV sea una operación peligrosa. El acceso al techo en medio de paneles FV puede ser dificultoso, debido a los conductos y otros componentes del sistema FV que están ubicados en toda el área del techo. Durante el combate de incendios es importante tomar en cuenta que el sistema de paneles FV no puede ser “simplemente apagado”, dado que generan corriente eléctrica continuamente. Sin embargo, pueden estar aislados del sistema eléctrico del edificio.

En el incendio de Organic Valley, la decisión de no enviar a los bomberos al techo del edificio para las operaciones de ventilación fue tomada prontamente. Esto terminó siendo una precisa evaluación del riesgo, cuando posteriormente se detectó que, dado el derrumbe del sistema del techo del edificio, la cubierta del techo estaba energizada debido a los paneles FV en contacto con los paneles de metal del techo. Tanto las acciones de supresión como de revisión y reacondicionamiento fueron complejas debido al hecho de que el sistema FV continuaba generando electricidad. En el incendio de Organic Valley, como en la mayoría de los incendios en sistemas FV, los bomberos no pudieron acceder a muchas de las áreas de la estructura hasta que los paneles fueron quitados o aislados de manera segura.

SUMINISTRO DE AGUA Y DESEMPEÑO DE LOS ROCIADORES

En tanto al suministro de agua público, La Farge tiene las características habituales y está diseñado y dispuesto para satisfacer las necesidades del centro de la ciudad en un día normal: para uso doméstico, industrial liviano y comercial. Un incidente de incendio de grandes dimensiones, para el que se usan miles de galones de agua en un corto período y que utiliza solamente el sistema de agua doméstico, puede, generalmente, representar una carga adicional para el sistema y provocar su falla. En el incendio de Organic Valley, el derrumbe del techo y la posterior rotura de la tubería principal de los rociadores del ático derivó en un rápido drenaje de los tanques de retención del sistema de agua comunitario.

Es necesario que los cuerpos de bomberos tomen en consideración dichos escenarios cuando se enfrentan al desarrollo de sus comunidades. Los bomberos necesitan saber si el suministro de agua público se verá sobrecargado por un incidente de grandes dimensiones y necesita planificar alternativas tales como las operaciones con camiones cisterna que se utilizaron durante el incendio de Organic Valley o el uso de una manguera de gran diámetro que transfiera agua desde una fuente estática, como un lago o estanque o embarcación para combate de incendios, hasta un incendio. (Ver “El problema FV”, a continuación.)

La investigación del incendio de Organic Valley confirmó que el sistema de rociadores del edificio funcionó de acuerdo con lo previsto, pero su efectividad se vio afectada por las circunstancias del incendio. Los rociadores funcionaron dentro del edificio, incluido el ático, pero debido al recorrido vertical y horizontal del fuego en los espacios ocultos del ala oeste del edificio, no lograron implementarse todas las capacidades de supresión de los rociadores. Los veedores dijeron que los rociadores pudieron lentificar el incendio, pero no pudieron llegar al asentamiento del fuego para una extinción efectiva.

Los desafíos que se plantearon en el incendio de Organic Valley subrayaron más ampliamente temas que se presentan, en la seguridad contra incendios, relacionados con las construcciones sustentables. Las técnicas de construcción de edificios ecológicos están cobrando impulso en todo el mundo, ya que los códigos de edificación requieren un mayor ahorro de energía y dado que se otorga mayor crédito a los edificios y emprendimientos que aplican métodos, materiales de construcción y equipos que permitan el ahorro de energía. A medida que se emprenden estas acciones, es importante reconocer que las partes interesadas no son solo los ocupantes de edificios y los bomberos; incluyen también a los diseñadores de edificios, los diseñadores e instaladores de sistemas, a los inspectores, a los responsables de la elaboración de los códigos y otros. Todas estas partes interesadas deben participar en los debates en curso, sobre la mejor manera de abordar los interrogantes que surgen, sobre seguridad contra incendios en estructuras que utilicen estas nuevas y emergentes tecnologías.

NFPA ya está desempeñando un importante rol en la conducción de dichos debates. El Código Eléctrico Nacional de 2014, por ejemplo, ha introducido cambios con el fin de contemplar las inquietudes relacionadas con la seguridad de los bomberos respecto de los paneles FV y en la edición 2012 de NFPA 1, Código de Incendios, Sección 11.12 se incluye información sobre un amplio rango de temas relacionados con sistemas de paneles de FV. Además, la Fundación de Investigación de Protección contra Incendios interviene en actividades de investigación que contemplan los distintos aspectos de la seguridad de las construcciones ecológicas. Esta tarea, así como aquella emprendida en Underwriters Laboratories y en otras entidades, promete ofrecer los fundamentos analíticos de algunos de los problemas asociados con la construcción sustentable.

Durante años, los bomberos han proporcionado anécdotas que evidencian estos problemas y organizaciones como la National Association of State Fire Marshals (Asociación Nacional de Jefes de Bomberos Estatales) han cumplido un rol fundamental en posicionar estos temas entre las inquietudes más importantes para ser abordadas. En la actualidad y durante los años venideros, la cantidad de información que prometen brindar los bomberos en esta área específica, serán de gran utilidad para la elaboración de códigos y normas adicionales.

Bob Duval es director regional de Nueva Inglaterra (EE.UU.) e investigador de incendios de NFPA.

El Problema FV

El 1 de septiembre de 2013, se produjo un incendio en un depósito de alimentos de almacenamiento en frío de 366,000 pies cuadrados (34,003 metros cuadrados) de Dietz&Watson,elproblemaFVMás de 7,000 paneles FV cubrían el techo del depósito de Dietz & Watson de New Jersey, lo que dificultó las acciones de combate del incendio.

situado en Delanco, New Jersey. Cuando las primeras unidades arribaron al lugar, informaron la presencia de un incendio en el techo del edificio. Cuando los bomberos observaron el techo con las escaleras aéreas, vieron que toda la superficie del techo estaba cubierta con paneles fotovoltaicos (FV)—más de 7,000 paneles—que se utilizaban para generar energía eléctrica para el edificio, así como para su reventa a la compañía del servicio público.

La presencia de los paneles hizo que fuera difícil, si no imposible, para los bomberos acceder al asentamiento del fuego. El incendio fue combatido de una manera defensiva en toda su extensión y el edificio y sus contenidos fueron completamente destruidos. El intenso incendio requirió la respuesta de cientos de bomberos y gran cantidad de vehículos de todo el estado, y llevó más de 24 horas controlarlo.

El incendio de Dietz & Watson está entre los últimos de una serie de incendios en que la presencia de paneles de FV, de uso cada vez mayor en azoteas de edificios industriales y comerciales presentara un problema. El acceso a azoteas y los temas relacionados con la seguridad eléctrica que plantean estos sistemas son una gran preocupación para los bomberos, en especial si se toma en consideración que, la creciente popularidad de los paneles FV significa que la interacción entre bomberos y equipos eléctricos energizados tenderá a aumentar en los próximos años.

Para abordar estas inquietudes, diversos estados están considerando la promulgación de leyes cuyo propósito sería mejorar la seguridad de los bomberos trabajando en cercanía con los sistemas de paneles FV. En New Jersey, por ejemplo, el proyecto de ley 507 del Senado procura mejorar la seguridad de los bomberos, requiriendo que los edificios no residenciales, con paneles solares en sus techos, tengan colocados cerca de la entrada principal del edificio, emblemas con las letras “P/S”, por paneles solares, para notificar al cuerpo de bomberos local. El proyecto de ley también requeriría que los edificios con paneles FV estén equipados con interruptores de apagado externos, a fin de reducir o eliminar el peligro de electrocución.

NFPA también está desempeñando un rol principal en la consideración de los temas de seguridad contra incendios relacionados con los sistemas FV. El Código Eléctrico Nacional  de 2014, por ejemplo, ha introducido cambios con el fin de contemplar las inquietudes relacionadas con la seguridad de los bomberos respecto de los paneles FV, incluida una disposición para el rápido apagado de los sistemas FV de edificios, y en la Sección 11.12 de la edición 2012 de NFPA 1, Código de Incendios, se incluye información sobre un amplio rango de temas relacionados con estos sistemas. La Fundación de Investigación de Protección contra Incendios está encabezando la investigación sobre las ramificaciones que presentan las construcciones ecológicas y las tecnologías sustentables en su relación con la protección contra incendios y los bomberos, incluyendo temas específicos relacionados con la seguridad que plantean los sistemas de paneles s FV para los bomberos.

Mientras tanto, los bomberos continúan enfrentándose a los potenciales peligros que presentan los sistemas FV. El 1 de diciembre de 2013, otro incendio ocurrido en New Jersey, en el que se vieron involucrados los paneles de la azotea de un edificio comercial—esta vez en el Municipio de Florence—provocó daños en varios de los sistemas. Se observaron dos diferencias importantes entre este incendio y el incidente de Dietz & Watson: el incendio del Municipio de Florence fue detectado tempranamente y la disposición de los sistemas de paneles FV en el techo permitió al cuerpo de bomberos acceder al área del incendio. Los bomberos pudieron aislar el incendio sin exponerse directamente a los arreglos FV energizados. —B.D.

Ecológico + seguro

En 2010, la National Association of State Fire Marshals (NASFM) publicó un informe sobre temas relacionados con el desarrollo y la construcción sustentable, que son motivo de preocupación para los bomberos. Si bien ello identificaba diversas características preocupantes de la planificación y construcción de las comunidades, no se detallaban los datos sobre la extensión real del problema ni los medios específicos para resolver las cuestiones en las distintas etapas de planificación, diseño, construcción y uso de los edificios. Desde ese informe fundamental de la NASFV, se han llevado a cabo otras acciones de investigación para analizar con mayores detalles estos y otros temas relacionados.ecologicoyseguro

En función del análisis llevado a cabo por la Fundación de Investigación de Protección contra Incendios, y de los datos e información suministrados en la investigación del Instituto Nacional de Normas y Tecnología (National Institute of Standards and Technology), Underwriters Laboratories y otros, existen claras indicaciones de un aumento en los peligros y riesgos a los que se enfrentan los bomberos en incendios en edificios realizados con elementos de construcción ecológica. Si dichos elementos no son comprendidos, cuantificados y mitigados, seguirán provocando lesiones y muertes en los bomberos.

A fin de abordar estos problemas, la Fundación de Investigación ha emprendido un nuevo proyecto, “Cuantificación de las características de las construcciones ecológicas para la seguridad del combate de incendios”. Los resultados de esta acción contribuirán directamente a reducir el potencial de lesiones y muertes en el escenario del incendio, ya que facilitarán el reconocimiento de los riesgos relacionados con construcciones ecológicas, y así adoptar respuestas tácticas apropiadas para los entornos de incendio previstos y el desempeño estructural, en función de las construcciones contemporáneas y las cargas de fuego.

La meta del proyecto es reducir las lesiones y muertes de bomberos vinculadas a entornos de incendio desconocidos o no previstos y a respuestas estructurales asociadas con los edificios ecológicos y los elementos de construcción ecológicos. Los objetivos que permiten cumplir con esta meta incluyen la cuantificación del impacto en la seguridad de los bomberos, en un incendio en edificios ecológicos; y el desarrollo de una herramienta de diagnóstico que contribuya a la identificación de las características de las construcciones ecológicas con riesgos significativos y de las opciones de mitigación y la mejor preparación los bomberos para combatir incendios de estas características.

Para lograr estos objetivos, el proyecto desarrollará y someterá a prueba medios para la recopilación de datos sobre incidentes de incendio, específicamente en incendios domésticos que presentan las características de construcciones ecológicas, y en particular aquellos que han provocado lesiones o muertes para los bomberos. Cuantificará el aumento de los peligros o riesgos de incendio, o la disminución del desempeño del fuego, en relación con las características de las construcciones ecológicas de edificios residenciales y comerciales. Mediante la revisión de los datos sobre pruebas de incendio existentes y la realización de pruebas del desempeño del fuego en elementos de construcciones ecológicas seleccionados, entre ellos los sistemas de envoltura de construcciones estructurales y los atrios ventilados de manera natural versus de manera mecánica; desarrollará una herramienta de diagnóstico para contribuir a la evaluación de los peligros y riesgos de incendio de los edificios ecológicos y las características para las construcciones nuevas y existentes; investigará las modificaciones en las tácticas de combate de incendios según sea apropiado para las tecnologías de las construcciones ecológicas; y elaborará los materiales para la capacitación y el entrenamiento del personal de los servicios contra incendios sobre los riesgos para la seguridad y las tácticas en este tipo de construcción.

El proyecto de tres años está dirigido por el Worcester Polytechnic Institute (Instituto Politécnico de Worcester), con la colaboración de la Universidad de Maryland y el FPRF, y se ha previsto su finalización para julio de 2017.
Source: http://www.nfpajla.org/archivos/edicion-impresa/bomberos-socorristas/1150-tormenta-perfecta

Posted in Incendios, Incendios Industriales, Incendios Urbanos, NFPA Journal, Prevencion, Sistemas fijos de extincion | Comentarios desactivados en Tormenta perfecta.

Victimas de incendios en España 2014.

Posted by Firestation en 20/12/2015

vic2014

Posted in Incendios, Prevencion, Proteccion civil | Comentarios desactivados en Victimas de incendios en España 2014.

Alarmas y notificacion. ¿Puedes oirme, y entenderme?

Posted by Firestation en 21/11/2015

alerta_alarma_medium

Por Robert Schifiliti

10 temas clave que afectan la inteligibilidad de las comunicaciones de voz.

Los sistemas de alarma de incendio que utilizan la voz para informar a los ocupantes y direccionar sus movimientos han sido elementales en la protección contra incendios durante décadas. En años recientes, sin embargo, a medida que proliferaban los sistemas denominados “para todo riesgo” —esos diseñados no solamente para incendios, sino para cualquier situación de emergencia— se abrió una enorme cantidad de interrogantes sobre cómo integrar de manera efectiva la voz a dichos sistemas. Los cambios han llegado rápidamente y han afectado a disciplinas e industrias que previamente tenían poco conocimiento, o necesidad de tales sistemas. También se han llevado a cabo cambios significativos en el código —NFPA 72®, Código Nacional de Alarmas de Incendio y Señalización— que da tratamiento a estos sistemas. No es de extrañar que los planificadores, diseñadores, autoridades, instaladores y usuarios estén luchando por comprender y aplicar toda esta nueva información.

La confusión puede comenzar incluso con la terminología más básica. “Sistemas de comunicaciones de emergencia” (ECS, por sus siglas en inglés) y “sistemas de notificación masiva” (MNS, por sus siglas en inglés) se usan a menudo como sinónimos, pero no son la misma cosa. La edición 2010 del código NFPA 72 creó una nueva y más amplia categoría de ECS que incluye a los MNS y una variedad de otros sistemas de emergencia. Este Código define un ECS como un “sistema para la protección de vidas mediante la indicación de la existencia de una situación de emergencia y la comunicación de la información necesaria para facilitar una apropiada respuesta y acción,” y la mayoría de las formas de ECS se apoyan en el uso de la voz como estrategia primaria de transmisión de mensajes y comunicaciones.

Las necesidades de un creciente número de usuarios de ECS, desde el uso militar hasta campus universitarios y lugares de trabajo, están forzando a muchos de nosotros a reconsiderar cómo se utiliza la comunicación por voz en estos sistemas. El problema es que muchos de los sistemas de comunicación por voz aún son diseñados bajo los principios de audibilidad en lugar de los de inteligibilidad—otro punto de confusión. Audibilidad significa que usted puede oír algo, por ejemplo una alarma de incendio. Inteligibilidad significa que usted no sólo oye, sino que además, comprende. Es la diferencia entre el sonido y el lenguaje, entre una señal indicadora de la necesidad de tomar acción y un mensaje más complejo que comunica la situación, lo que es necesario hacer, y el porqué de esa necesidad. Los sistemas diseñados en base a la mera audibilidad no son suficientes para asegurar la inteligibilidad, lo que requiere un enfoque más sofisticado en el diseño del audio. Los sistemas de voz fracasarán en su misión prevista si no pueden ser fácil e inmediatamente comprendidos por la audiencia a quien van dirigidos. El sistema fracasará en lograr que la gente haga ciertas cosas, tales como refugiarse en determinado sitio, si el mensaje está mal formulado, si es muy largo o no da en forma adecuada las directivas específicas.

Una encuesta informal de expertos líderes en ECS ayudó a identificar 10 problemas comunes que afectan la calidad de la voz y el uso efectivo de los ECS, temas que no están tratados en forma directa en los requisitos del código NFPA 72. Si bien el cuerpo del código NFPA 72 no contiene información específica sobre el diseño o la evaluación de los sistemas de voz, el Anexo D del Código contiene tanto sugerencias para la buena práctica del diseño de sistemas de voz, como un protocolo bien detallado de prueba de los sistemas. Se puede acceder a una versión de cortesía (sólo lectura) del código NFPA 72 utilizando la página de información online del documento en http://www.nfpa.org/72. Además, la Asociación Nacional de Fabricantes Eléctricos publica una guía —la SB 50-2008, Guía de Aplicaciones de Inteligibilidad del Audio en Comunicaciones de Emergencia— disponible en nema.org, la que da tratamiento a algunos de estos problemas de diseño.

1. Audibilidad: No es lo mismo que inteligibilidad
Muchos diseñadores, instaladores y autoridades asumen que si el mensaje de voz es audible, será comprendido. Un sistema de voz debe ciertamente ser audible para ser comprendido; la mayoría de la gente ha tenido experiencias con sistemas localizadores que parecían susurrar y no podían ser comprendidos con ruido ambiental de fondo. Sin embargo, también habrán experimentado algún sistema a volúmenes demasiado altos. Los mensajes de voz a volúmenes muy altos pueden ser distorsionados por la electrónica de sistemas sobrecargados, y a menudo dan por resultado una reverberación excesiva en el espacio.

Aún cuando un mensaje de voz es audible y se presenta a un volumen confortable para la escucha, no necesariamente significa que es inteligible. Un sistema inteligible es un sistema claro, comprensible y capaz de ser comprendido. Imagine la frase “No utilice la escalera B”. Parado en una sala, usted oiría la oración proveniente en forma directa del altoparlante más cercano. Fracciones de segundo después, la frase también provendría del siguiente altoparlante más cercano. Y fracciones de segundo después de eso, la frase rebotaría contra el muro, cielorraso o piso y llegaría a sus oídos fuera de toda sincronía con las otras fuentes. Esto reduce la inteligibilidad, usualmente mediante la pérdida o corrupción de las consonantes existentes en las palabras. En este ejemplo, el “no” podría perderse, haciendo que el mensaje se interpretara exactamente de manera opuesta a la intencionalidad que tenía el mensaje. O, la letra “B” podría sonar como la letra “E”.

Los oyentes no deberían recibir sonidos provenientes de más de una fuente, a menos que estuvieran sincronizados para llegar a sus oídos en el mismo instante. El diseño efectivo de los sistemas de voz requiere que la reverberación sea minimizada, y esto puede hacerse, en parte, no sobrecargando el sistema—no presentándolo en un volumen demasiado alto.

2. La cantidad y espaciamiento de los altoparlantes
Muchos diseñadores de sistemas diseñan un espacio utilizando el mismo número de altoparlantes que utilizarían si colocaran sirenas en un diseño de alarma de incendio básico únicamente de tono. O simplemente utilizan una combinación de altoparlantes con luces estroboscópicas cada vez que se requiere una luz estroboscópica. Ninguno de estos métodos da tratamiento a los factores reales que afectan la inteligibilidad de la voz.

Si su oído está cerca de una fuente de sonido, la fuente no necesita de mucha energía para ser audible. Una buena analogía, son los auriculares, que liberan una cantidad pequeña de energía de sonido directamente en su oído. Incluso cuando sube el volumen hasta el nivel donde usted podría percibirlo como alto, aquellas personas cerca suyo podrían no oír nada. Esta analogía funciona bien para la mayoría de los diseños de sistemas de voz utilizados en el interior de edificios: utilizar más altoparlantes, con menor espaciamiento y funcionando a niveles menores de potencia.

¿Cuántos altoparlantes se requieren? ¿Y a qué espaciamiento y nivel de potencia? Depende. Un buen diseño podría comenzar con el objetivo de lograr un nivel de sonido uniforme donde el oyente nunca experimente una variación mayor a los 6 dB a medida que se mueve por un espacio dado. Este es un objetivo utilizado por ingenieros diseñadores de refuerzos de sonido en salas de reuniones y algunos sistemas de localización. Un sistema de emergencias puede usualmente tolerar una variación mayor, siempre que supere el ruido de fondo y siempre que no se encuentre a un volumen tan alto como para crear reverberación con las superficies.

El nivel de presión del sonido debe ser suficiente como para superar la mayor parte del ruido de fondo, pero no al punto de percibirse como “alto”. Para la mayoría de las ocupaciones, el nivel puede basarse en el nivel de ruido ambiental medido a unos 2000 Hz, una frecuencia que es un componente importante para la inteligibilidad del habla, particularmente para las consonantes. La potencia de salida de un altoparlante varía con la frecuencia y también varía a medida que uno se mueve fuera del eje—ambos afectarán el espaciamiento requerido. Además, un cielorraso más alto efectivamente requiere menos altoparlantes que uno más bajo. Sin embargo, dado que los altoparlantes de un cielorraso alto se encuentran más lejos del oído, podrían requerir una salida en dB un poco mayor, ajustada mediante el uso de una derivación superior en el parlante, o mediante el uso de altoparlantes con una clasificación de potencia diferente. Los Anexos A y D del código NFPA 72 contienen diagramas y algunos debates sobre estos principios.

La edición 2010 del código NFPA 72 incluye un nuevo requisito/herramienta para diseñadores para designar Espacios Acústicamente Distinguibles (ADS, por sus siglas en inglés). Estos son espacios que difieren de otros por su acústica, configuración física, ocupación o diseño de sistemas. El establecimiento de ADS enfoca a los diseñadores y autoridades en la posible necesidad de utilizar principios de diseño diferentes.

3. La ubicación de los altoparlantes
Muro o cielorraso: esa es la cuestión. Los altoparlantes montados en el cielorraso podrían ser más fáciles y menos costosos para instalar y mover en situaciones donde hay instalaciones abiertas y expuestas o que cuentan con cielorrasos suspendidos. El montaje sobre el muro podría ayudar a la colocación de altoparlantes en una ubicación cercana al oyente y a la reducción de los requisitos de potencia.

Es fácil diseñar la cobertura a nivel del oído cuando se conocen las características de un altoparlante. Cada altoparlante produce una salida de sonido audible en forma de cono, y la medida de dicho cono puede variar debido a una cantidad de factores, incluidos aquellos descritos anteriormente. En realidad, cada altoparlante tiene una salida ubicada en algún nivel por debajo del cono descrito por las características del altoparlante. El problema radica en que el nivel puede ser un poco menor en algunos ángulos y que varía con la frecuencia—dos factores que afectan la calidad de la inteligibilidad del habla. No obstante, podría ser aceptable el diseño de algunos espacios con inteligibilidad reducida, particularmente en corredores donde los ocupantes se encuentran a menudo en movimiento y pueden moverse a distancias cortas hacia áreas de mayor inteligibilidad.

4. La calidad de un mensaje pregrabado
La calidad de un mensaje pregrabado puede controlarse mejor que los anuncios por micrófono en vivo. Los mensajes pregrabados deberían ser cuidadosamente guionados y grabados por locutores/comentaristas profesionales que saben cómo utilizar las inflexiones de la voz, pausas y enunciaciones para transmitir significado.

La calidad de un mensaje grabado es en gran parte afectada por el tamaño del chip de memoria de la unidad de control y las especificaciones (profundidad de bits y frecuencia de muestreo) utilizadas para la grabación. Los sistemas de comunicaciones de emergencia no necesitan una alta fidelidad ni un gran tamaño de archivo, como los utilizados por ejemplo, en grabaciones de música, pero en áreas con altos niveles de ruido o acústicas desafiantes, una grabación de mejor calidad podría convertirse en la diferencia entre un sistema inteligible y uno que requiere un tiempo y esfuerzo considerable por parte del oyente para comprenderlo—asumiendo que el mensaje se repite lo suficiente.

En estas situaciones, la calidad puede mejorarse mediante el uso de 16 o 24 bits de profundidad versus la usual profundidad de 8 bits, y mediante el uso de una frecuencia de muestreo de por lo menos 8.000 o 16.000 Hz. La frecuencia de muestreo tiene un impacto directo en las consonantes que son tan importantes para comprender las palabras. La frecuencia de muestreo necesita ser al menos dos veces la mayor frecuencia que se pretende reproducir de manera confiable. De modo que una tasa de muestreo de solo 4.000 Hz podría ahorrar algo de memoria en el chip, pero limitaría la reproducción a sonidos no mayores de 2.000 Hz. Con ese límite de frecuencia, el mensaje de voz sonaría apagado y las consonantes se escucharían de manera distorsionada.

5. El cableado y la potencia
Es bastante común el ver cables de calibre 18 o 16 para circuitos de altoparlantes que tienen una longitud de cientos de pies—los diseñadores que crearon esos circuitos probablemente utilizaron un cable de mayor calibre, 10 o 12, en los altoparlantes de sus home theaters. Dado que los circuitos de audio alternan la corriente, es común medir la pérdida de potencia en decibeles en lugar de medirla en porcentajes de voltaje, como se hace en los circuitos de alarmas de incendio de corriente directa. Los cálculos debe hacerlos el instalador o fabricante para seleccionar la medida del cable que limite la pérdida de potencia a no más de 3 dB.

Ningún diseño es perfecto. La mayoría requerirá el agregado de algunos altoparlantes o el cambio de derivaciones para ajustar el volumen, alto o bajo. Deberían utilizarse medidas de cables que permitan una carga adicional, y debería incluirse capacidad adicional de potencia del amplificador para permitir cambios y ajustes que podrían necesitarse para balancear el sistema. Hay que tener en cuenta que los amplificadores pueden generar distorsión y ruido si se hacen funcionar al límite. Esta es otra razón para aumentar el tamaño del amplificador más allá de lo que requiere el diseño de base.

6. Ubicación y diseño del centro de comando de emergencias
Los arquitectos y propietarios se esfuerzan por optimizar el uso de cada pie cuadrado de un edificio. Contar con un centro de comando de emergencias seguro y resistente a incendios no es habitualmente una prioridad salvo que así lo requiera algún código o reglamentación. Como resultado, muchos sistemas de comunicaciones de emergencia tienen su interfaz central, incluido el micrófono, ubicada en el hall principal del edificio—en general, una de las áreas más ruidosas, y menos seguras del edificio, en particular durante una emergencia.

Los atributos físicos de un centro de comando de emergencias variarán en base a su misión prevista. No obstante, todos los centros de comando necesitan tener niveles bajos de ruido ambiente para permitir a los equipos de emergencia trabajar y comunicarse. Esto se hace mediante el suministro de áreas de trabajo especificas para las diferentes funciones y espacio suficiente para los miembros de los equipos, por ejemplo, el puente de mando de la nave estelar Enterprise, de “Viaje a las Estrellas”, con sus estaciones para tareas específicas, incluida una para el comandante y otra para el oficial de comunicaciones. Deben proveerse tratamientos acústicos para absorber y disipar el ruido conversacional, y los muros y perforaciones de servicio deben construirse para limitar el ruido exterior.

Es importante que cualquier ubicación de los micrófonos se posicione de modo tal que el usuario no se encuentre cerca de los otros que deben continuar hablando. Asimismo, tampoco debería haber un altoparlante en ningún lugar cercano a la ubicación del micrófono, lo que causaría retroalimentación y ruido en el sistema. El cable del micrófono debería ser lo suficientemente largo para permitirle al usuario sentarse en o alcanzar un escritorio o estación de trabajo donde podría haber diagramas, planos operativos, plantillas de mensajes, guiones, u otras anotaciones que necesitara consultar mientras hace sus anuncios. La colocación de material que absorba sonido sobre las ubicaciones de los micrófonos ha demostrado en general que reduce el ruido y aumenta la inteligibilidad de la voz.

7. Complejidad y ergonomía del sistema
La gente ha llegado a esperar interfaces de usuario intuitivas y ergonómicas para computadoras, teléfonos, reproductores de música y otros electrodomésticos. De igual manera, la interfaz de usuario para un ECS necesita considerar la misión y los usuarios. Los sistemas utilizados diariamente para funciones de rutina permiten a los usuarios familiarizarse con los controles y manejar cómodamente la complejidad del sistema; el permitir que un ECS de voz fuera utilizado para propósitos ajenos a la emergencia significó un gran avance en términos de mejorar su uso en la edición 2010 del código NFPA 72. Los sistemas que se utilizan sólo en raras oportunidades, por el contrario, requieren interfaces más simples. Las fuerzas de emergencia como la policía y los bomberos, podrían contar con personal entrenado y capaz de utilizar la interfaz del sistema. En otras situaciones, podría ser necesario para los propietarios el contar con personal calificado disponible para colaborar o emitir anuncios bajo la dirección de los comandantes de emergencia.

Las características del micrófono del sistema son importantes factores ergonómicos que afectan la inteligibilidad de la voz. Algunos micrófonos necesitan mantenerse cerca de la boca, a alrededor de una pulgada o menos. Otros necesitan estar a tres o cuatro pulgadas de distancia. ¿Cómo puede saber el usuario lo que resulta ideal? Un simple diagrama cerca del micrófono puede ser de ayuda. Algunos micrófonos son muy direccionales y deben mantenerse en forma vertical frente a la boca de la persona que habla. Estos micrófonos son útiles en centros de comando pequeños, dado que es menos probable que capten conversaciones paralelas de los laterales. Por otro lado, los micrófonos con una mayor sensibilidad polar son más aptos para que un usuario lleve cómodamente mientras se mueve y realiza otras tareas. El inconveniente que tienen es que recogerán ruidos extrínsecos en centros de comando pobremente diseñados.

8. Cuándo y cómo probar los sistemas de voz
El Anexo D del código NFPA 72, elaborado con la colaboración de la Fundación para Investigaciones de Protección contra Incendio, describe protocolos de prueba detallados, incluida información sobre cómo planificar las pruebas. Los protocolos de prueba en el Anexo no son requeridos; el Código permite su utilización, pero también permite una simple prueba de “escucha”.

El NFPA 72 requiere que los altoparlantes sean probados al momento de la aceptación y una vez al año. La prueba, no obstante, es muy diferente de la de los sistemas únicamente de tono, dado que la inteligibilidad del sistema de voz está afectada por algo más que sólo la audibilidad. La medición de la audibilidad de un mensaje de voz mediante el uso de un medidor de sonido carece virtualmente de significado respecto de la inteligibilidad, dado que la presencia de mobiliario, alfombras, y personas, pueden alterar de manera drástica la calidad de la señal de la voz mediante la absorción de diferentes frecuencias de sonido. Sin embargo, en muchos casos, el mobiliario y las personas pueden mejorar la inteligibilidad de la voz mediante la reducción de la reverberación. Asimismo, dado que diferentes frecuencias de sonido afectan los diferentes sonidos de la voz, llamados fonemas, es importante que el sonido esperado sea incluido como parte de la prueba.

También pueden utilizarse medidores de inteligibilidad para medir el desempeño del sistema. Se reproduce en el sistema un sonido especial que contiene todos los fonemas que componen el lenguaje humano, con el medidor registrando el funcionamiento. El sonido de la prueba puede ser pregrabado en el chip de voz por el fabricante del sistema. El protocolo de prueba establecido en el código NFPA 72 también incluye un método para incluir el micrófono en la prueba. La utilización del micrófono es una oportunidad para la gente de probar cómo obtener la mejor calidad de voz. También es una prueba importante para una pieza más de la electrónica que puede afectar dramáticamente la calidad de la voz.

Una consideración adicional con los mensajes pregrabados es que la calidad de tales mensajes podría no ser tan crítica como la calidad de los anuncios en vivo, porque los mensajes pregrabados se repiten habitualmente varias veces en forma automática, dando a los oyentes la oportunidad de aclarar sonidos o palabras dudosos/as. La investigación ha demostrado que si se entiende alrededor del 80 por ciento de las palabras, la comprensión de las oraciones será de un noventa y pico por ciento, porque el cerebro está acostumbrado a poner las cosas en contexto. Repetir un mensaje varias veces, casi garantiza la correcta recepción del mensaje, excepto en las peores condiciones. Pero el mensaje de un comandante hablando en el micrófono podría no repetirse nunca, o podría repetirse utilizando palabras o estructuras de frases diferentes.

Sin la repetición textual, el ambiente acústico y todas las piezas del equipo en la cadena, incluido el micrófono, cobran mayor importancia en lo relativo a la inteligibilidad del habla y a la correcta recepción del mensaje.

9. Lo que el mensaje de voz debería decir 
Se puede tener el mejor sistema de sonido jamás fabricado, pero si no se dicen las palabras adecuadas, no se logrará que la gente haga lo que se le requiere. Y peor aún, eso podría significar un daño mayor.

Un mensaje no será comprendido si la persona que habla tiene un acento desconocido, habla muy rápido, sostiene el micrófono muy cerca o muy lejos, o utiliza lenguaje muy informal, técnico o complejo. Un experto señaló que la frase “por favor” no debe utilizarse en los mensajes pregrabados; los anuncios de emergencia deben ser claros, directos y despojados de todo lenguaje innecesario. Los mensajes tiene dos propósitos principales: informar a la gente sobre la situación que está teniendo lugar y guiar el comportamiento de las personas.

Deberían contener tres o cuatro elementos críticos: lo que ha sucedido, lo que debe hacerse, el “por qué” debe hacerse y “quién soy yo”—qué autoridad está diciendo esto. Tener en cuenta que “lo que debe hacerse” debe ser el último elemento mencionado, dado que será el más recordado. Ejemplo: “Hay un incendio en el piso 15. Por su seguridad, el jefe de bomberos pide que evacuen utilizando la escalera”.

Hay muchos otros factores que afectan las buenas estrategias de mensaje. La Fire Protection Research Foundation está trabajando con el Instituto Nacional de Normas y Tecnología, en nombre del Comité Técnico de ECS del código NFPA 72 para desarrollar lineamientos y plantillas para una variedad de emergencias, audiencias objetivo, y plataformas de envío, incluidas comunicaciones de voz.

10. ¿Quién estará autorizado a utilizar el sistema?
La respuesta a la pregunta sobre quién autorizará y hará los anuncios requiere una cuidadosa planificación y debate entre todas las partes interesadas relacionadas con la planificación e implementación de los ECS.

Los sistemas con mensajes pregrabados pueden activarse automáticamente para emergencias tales como un incendio, en las cuales se han elaborado y analizado los posibles escenarios, y donde las acciones necesarias están bien establecidas. No obstante, aún cuando los mensajes pregrabados han sido automáticamente activados y transmitidos, la emisión de mensajes en vivo por el equipo de emergencias aumentará la efectividad; en algunas situaciones, los ocupantes podrían considerar irrelevantes los mensajes pregrabados, al igual que a menudo son ignoradas las señales de la alarma de incendio únicamente de tono. Asimismo, muchas emergencias casi siempre requerirán algún tipo de evaluación, toma de decisión, y ajuste de plantillas de mensaje antes de emitir los anuncios de voz.

En un escenario de incendio, los anuncios en vivo podrían esperar hasta que el comando del incidente se haya establecido y hasta que haya tenido la oportunidad de reunir información crítica que podría afectar el contenido del mensaje. Sin embargo, cuando hay una persona con una pistola en una clase, podría ser necesario el uso más inmediato de los ECS. Esta es la razón por la que el tema de la autorización necesita ser parte del plan de emergencias. La cuestión del acceso, del control físico y/o contraseña, hacia los controles y micrófono de los ECS debe ser resuelta antes del diseño e instalación del sistema. De igual manera, cuando hay múltiples micrófonos o estaciones de comando, es necesario establecer protocolos de control, accesos y prioridades.

En resumen
Los ECS requieren ser planificados, diseñados, instalados y utilizados con cuidado. Los sistemas que se basan en la voz para el envío de mensajes enfrentan numerosos desafíos que afectan a muchas personas, autoridades, actividades comerciales y profesiones. Es importante identificar a las partes involucradas y expertos que participaron en la etapa de planificación de cualquier proyecto de ECS. Dado que el diseño de los sistemas de voz es tan diferente de un diseño de señalización de alarma de incendio convencional, los ingenieros necesitan aprender nuevas técnicas y utilizar nuevas herramientas de diseño o buscar alianzas con profesionales experimentados. Las autoridades y propietarios necesitan estar activamente involucrados en la planificación de estos sistemas; ignorar las cuestiones de voz de los ECS o sólo darles tratamiento parcial puede poner en peligro la calidad y efectividad de las comunicaciones de voz durante una emergencia.

Robert Schifiliti, ingeniero en protección contra incendios matriculado, es presidente y CEO de R.P. Schifiliti Associates, Inc. Participa de varios comités de la NFPA, y preside el Comité de Correlación Técnica de la NFPA sobre Sistemas de Señalización para la Protección de la Vida y la Propiedad, responsable del código NFPA 72.


ECS, Bidireccionales
NFPA 72, Código Nacional de Alarmas de Incendio y Señalización, divide ampliamente los sistemas de comunicaciones de emergencia (ECS, por sus siglas en inglés) en sistemas unidireccionales y sistemas bidireccionales. Los sistemas unidireccionales incluyen tanto sistemas tradicionales de voz para alarma de incendio como sistema utilizados para otro tipo de riesgos. Los sistemas unidireccionales también se dividen en aquellos ubicados dentro del edificio y aquellos que transmiten mensajes de voz hacia el exterior en una amplia área, o aquellos que envían mensajes a receptores específicos, habitualmente utilizando mensajes de texto, correo electrónico, o discado masivo y envío de mensajes de voz grabados.

Los sistemas bidireccionales incluyen tanto teléfonos de las fuerzas tradicionales de bomberos/de emergencia como sistemas que perfeccionan el uso de radios de las fuerzas de emergencia dentro de un edificio o área. El Código también ha incluido requisitos para sistemas de comunicaciones bidireccionales para ascensores y áreas de refugio, que habían sido requeridos por los códigos de edificación desde hacía tiempo, pero que no habían sido cubiertos por ninguna norma de desempeño ni instalación antes de la edición 2010 del código NFPA 72.
Source: http://www.nfpajla.org/archivos/edicion-impresa/alarma-deteccion-senalizacion/1003-puedes-oirme-y-entenderme-ahora

Posted in Comunicaciones, Equipos/Instrumentos, NFPA Journal, Prevencion, Proteccion civil, Psicologia en la emergencia, Señalizacion Emergencias | Comentarios desactivados en Alarmas y notificacion. ¿Puedes oirme, y entenderme?

Prevencion de cancer en bomberos.

Posted by Firestation en 25/10/2015

ThoseCoolCarcinogens¿Lavar el equipo? ¡Pero entonces todos estos cancerigenos molones desapareceran!

NIOSH Study of Firefighters Finds Increased Rates of Cancer

A combined population of 30,000 firefighters from three large cities had higher rates of several types of cancers, and of all cancers combined, than the U.S. population as a whole, researchers from the National Institute for Occupational Safety and Health (NIOSH) and colleagues found in a new study.

The new findings are generally consistent with the results of several previous, smaller studies. Because the new study had a larger study population followed for a longer period of time, the results strengthen the scientific evidence for a relation between firefighting and cancer, the researchers said.

The findings were reported in an article posted on-line on Oct. 14, 2013, by the peer-reviewed journal Occupational and Environmental Medicine. The article is available online at http://oem.bmj.com/content/early/2013/10/14/oemed-2013-101662.full .

http://www.firefightercancersupport.org/wp-content/uploads/2013/10/NIOSH-Firefighter-Cancer-Study-w-Summary.pdf

The researchers found that:

  • Cancers of the respiratory, digestive, and urinary systems accounted mostly for the higher rates of cancer seen in the study population. The higher rates suggest that firefighters are more likely to develop those cancers.
  • The population of firefighters in the study had a rate of mesothelioma two times greater than the rate in the U.S. population as a whole. This was the first study ever to identify an excess of mesothelioma in U.S. firefighters. The researchers said it was likely that the findings were associated with exposure to asbestos, a known cause of mesothelioma.

The study analyzed cancers and cancer deaths through 2009 among 29,993 firefighters from the Chicago, Philadelphia, and San Francisco fire departments who were employed since 1950. The study was led by NIOSH in collaboration with the National Cancer Institute and the Department of Public Health Sciences in the University of California at Davis. The study was supported in part by funding from the U.S. Fire Administration.

Firefighters can be exposed to contaminants from fires that are known or suspected to cause cancer. These contaminants include combustion by-products such as benzene and formaldehyde, and materials in debris such as asbestos from older structures.

The findings of the new study do not address other factors that can influence risk for cancer, such as smoking, diet, and alcohol consumption. In addition, few women and minorities were in the study population, limiting the ability to draw statistical conclusions about their risk for cancer.

In a second phase of the study, the researchers will further examine employment records from the three fire departments, to derive information on occupational exposures, and to look at exposures in relation to cancer incidence and mortality. Those findings, when completed, will be published in a future article.

cartel_prevencionwebTamaño completo.

Solicitud descontaminación de EPIs

prl1

http://www.prlbomberos.com/

Health-SCBA-During-Overhaul“El ERA durante la revision final es de blandos. Ademas, ¿que es lo peor que puede pasar?”

Posted in Equipos de intervencion, Equipos proteccion, Prevencion | Comentarios desactivados en Prevencion de cancer en bomberos.

Medidas de prevención y protección contra incendios / Instituto Nacional de Seguridad e Higiene en el Trabajo

Posted by Firestation en 17/08/2015

PCI

Posted in Agentes Extintores, Incendios, Incendios Industriales, Incendios Urbanos, Legislacion, Manuales, Prevencion, Señalizacion Emergencias, Sistemas fijos de extincion | Comentarios desactivados en Medidas de prevención y protección contra incendios / Instituto Nacional de Seguridad e Higiene en el Trabajo

6 Minutos para la seguridad en incendios forestales.

Posted by Firestation en 07/08/2015

6MINFORSAFETY LOGO

Es un programa desarrollado por el Equipo de Seguridad en Incendios y Aviación (FFAST). Es la primera iniciativa respecto a la seguridad, que trata las situaciones de alto riesgo que históricamente han resultado un problema para la seguridad del bombero, o factores ambientales que han contribuido a poner la seguridad de este en riesgo. Este programa, creado en EEUU y puesto en práctica en la página web Six Minutes For Safety ha tenido un impacto muy positivo.
:: Documento completo 6 minutos para la seguridad (Doc. completo en PDF)   
:: 6 minutes for safety (Doc. idioma original completo en PDF)
> Comunicación
> Construcción de cortafuegos
> Primeros auxilios y salud
> Comportamiento del fuego
> Aviación
> Factores ambientales
> Situaciones de atrape
> Materiales peligrosos
> Interface forestal y urbana
> Seguridad incendios

http://www.prevencionlaboral.org

Posted in Incendios, Incendios Forestales, Prevencion, Tecnicas de Intervencion | Comentarios desactivados en 6 Minutos para la seguridad en incendios forestales.

FireFit Program. Programa de entrenamiento para intervencion forestal

Posted by Firestation en 02/08/2015

Este programa fue creado con el propósito de proporcionar a la Comunidad de incendios forestales con un programa de forma física completo, fácil de seguir con el objetivo primordial de mejorar la seguridad y la salud del bombero y reducir las lesiones. Ya que el término fitness es definido como la habilidad de lograr objetivos de productividad sin cansancio excesivo, y sin convertirse en un riesgo para uno mismo o para compañeros de trabajo, este programa contribuye a mejorar la seguridad del bombero forestal.
:: Introducción a Firefit  (Doc. completo en PDF)
:: Firefit program (Doc. idioma original completo en PDF)
  Este programa está patrocinado por el Equipo Federal de Seguridad y Aviación (FFAST)
Programa de Ejercicios
> Que es Fitness
> Antes de comenzar
> Componentes esenciales
> Fuerza y resistencia muscular
> Estabilidad troncal
> Flexibilidad
> Lesiones comunes
> Preguntas frecuentes
> Referencias
> Apéndice

http://www.prevencionlaboral.org

Posted in Formacion, Incendios, Incendios Forestales, Prevencion, Tecnicas de Intervencion | Comentarios desactivados en FireFit Program. Programa de entrenamiento para intervencion forestal

Guia para el desarrollo de simulaciones y simulacros de emergencia y desastres

Posted by Firestation en 22/06/2015

image117

Posted in Manuales, Prevencion, Proteccion civil, Siniestros Importantes | Comentarios desactivados en Guia para el desarrollo de simulaciones y simulacros de emergencia y desastres

Característica de Seguridad/Riesgo de Seguridad. Escaleras de incendios.

Posted by Firestation en 01/04/2015

Por Carl Baldassarra

 externstairwaydetail_16403

Hace 100 años, en su primer informe presentado al Comité Ejecutivo, el nuevo Comité de Seguridad Humana de la NFPA hizo sonar la alarma sobre los medios de escape de incendios. Un siglo después, todavía estamos luchando contra los problemas que presenta esta tecnología de la era victoriana

En el verano de 1975, se desató un incendio en los pisos más altos de un edificio de apartamentos de cinco pisos, revestido de piedra arenisca, situado en Back Bay, Boston. Los bomberos estaban en el lugar del hecho, con un camión escalera y la dotación participó en el rescate de una joven y de su pequeña ahijada, desde un escape de incendio de un piso superior.

Cuando uno de los bomberos estaba a punto de ayudar a la mujer y a la niña a llegar hasta la escalera, se derrumbó el escape de incendio. Un fotógrafo de un periódico hacía tomas de la dramática escena, y capturó el momento en el que el escape de incendio se desprendió, y la mujer y la niña se desplomaron hacia abajo, cayendo sobre la acera, mientras el bombero se aferraba a la escalera. La mujer murió en el lugar; la niña sobrevivió. Periódicos y agencias de noticias de todo el mundo divulgaron las imágenes— el fotógrafo, Stanley Forman, ganaría un premio Pulitzer por su trabajo de ese día — y se comenzaba el debate sobre la necesidad de códigos de seguridad contra incendios más severos, lo que llevó a que en algunos casos las municipalidades adoptaran reglamentaciones más estrictas que incluían disposiciones para escapes de incendio exteriores.

En NFPA, el debate llevaba ya décadas. Cien años antes, el Comité de Seguridad Humana de la NFPA, recientemente designado, se ocupaba de llevar a cabo un minucioso análisis de la seguridad contra incendios y de edificios. Creado en 1913 como parte de la respuesta de la NFPA al incendio ocurrido en la Triangle Waist Company, el devastador incidente ocurrido en 1911 en una fábrica de indumentaria de la Ciudad de Nueva York, en el que murieron alrededor de 150 personas, el comité dedicó sus primeros años al análisis de los incendios de mayor envergadura que provocaron pérdidas de vidas no solamente el de Triangle, sino también el incendio del Teatro Iroquois ocurrido en Chicago, en 1903 (más de 600 víctimas fatales), el incendio de la Escuela de Lake View, ocurrido en Collinwood, Ohio, en 1908 (en el que murieron 175 personas), el incendio de la fábrica de indumentaria Binghamton, ocurrido en el estado de Nueva York, en 1913 (31 víctimas fatales) y otros. Desde el principio, el comité reservó algunas de sus más duras críticas a los escapes de incendio, que solía considerar como una solución problemática para el problema aún mayor de sacar a las personas de un edificio, de manera rápida y segura ante un incidente de incendio.

Después del incendio de Triangle, las municipalidades de todo el país habían comenzado a promulgar leyes que requerían medios de emergencia para egresar desde edificios y las escaleras exteriores hechas de hierro forjado se transformaron en el método predominante para obtener dichos medios—aunque no sin generar nuevos problemas. En su informe presentado al comité ejecutivo de la NFPA, en 1914, el Comité de Seguridad Humana observó diversos “defectos comunes”, presentes en “un muy alto porcentaje de los escapes de incendio exteriores que actualmente se utilizan”. Entre dichos problemas se incluía la inaccesibilidad, su tendencia a estar desprotegidos contra el fuego y su deficiente diseño—muchos de los escapes de incendio más antiguos eran poco más que una serie de escaleras verticales empernadas a muros exteriores. Entre otros aspectos se incluía la ausencia de escaleras desde el segundo piso hasta la planta baja, condiciones generales deficientes, recubrimiento de hielo y nieve, y su uso como áreas de almacenamiento exteriores por parte de los arrendatarios del edificio. A pesar de dichos defectos, el comité expresó: “Lo cierto es que el escape de incendio exterior es la disposición especial más habitual para un escape, [y] que ello esté escrito en la legislación de los estados, y seguirá siendo así durante mucho tiempo”.

Un siglo después, todavía existen estos problemáticos escapes de incendio en muchos edificios antiguos. Sin embargo, los escapes de incendio generalmente no se encuentran a la vista y entonces tampoco se piensa mucho en ellos; son características de los edificios que se da por descontado son salidas secundarias “adecuadas” sin someterlos a demasiado análisis, aunque pueda ser sencillo para los profesionales en protección contra incendios descartar la capacidad de los escapes de incendio de brindar un beneficio mensurable para el egreso. De hecho, debido a los peligros que plantean los escapes de incendio en sí mismos, no han sido reconocidos como un medio de egreso aceptable en las construcciones nuevas. Desde la creación del Código de Salidas de Edificios—el precursor del NFPA 101, Código de Seguridad Humana—en 1927. La alternativa es la escalera con cerramiento certificada contra incendios, que también fue reconocida en la edición de 1927 del Código de Salidas de Edificios como un medio de egreso suficientemente confiable y de fácil uso, y con el que la mayoría de las personas tienen experiencia por el uso diario que hacen.

Pero, mientras los esfuerzos de preservación en todo el país procuran mantener los viejos edificios, y mientras estas estructuras son tenidas en cuenta para ser renovadas como parte de las acciones de remodelación de sus principales barrios, los escapes de incendio generalmente se incluyen como parte de los medios de egreso de dichos edificios. Dada nuestra tendencia a pasarlos por alto, se pierden, a veces, las oportunidades de hacer cumplir los requisitos de adecuación de las aberturas protectoras y de perfeccionar el acceso a los escapes de incendio. El riesgo de incendio asociado con algunos de estos edificios no siempre es evidente: un grave incendio en un piso inferior requeriría que muchas personas utilicen los escapes de incendio, sometiéndolos a una prueba física que podrían no haber tenido durante décadas, si es que alguna vez la tuvieron. Nuestras ciudades más antiguas están repletas de edificios con escaleras centrales únicas, o incluso con escaleras sin cerramientos, lo que coloca en un nivel aún más alto de importancia a los escapes de incendio como el medio de egreso secundario.

Si bien el uso real de los escapes de incendio para un egreso de emergencia no se somete frecuentemente a prueba, los riesgos siguen vigentes. Un trágico incidente de incendio en el Edificio de la Administración del Condado de Cook, situado en el centro de Chicago, ocurrido en 2003, se llevó la vida de seis personas. Una encuesta posterior, realizada en cientos de edificios de altura de la ciudad reveló un sinnúmero de deficiencias relacionadas con los escapes de incendio existentes, desde aberturas en muros no protegidas a condiciones de acceso difíciles o casi imposibles—problemas estos, idénticos a aquellos criticados por el Comité de Seguridad Humana de la NFPA casi un siglo antes y características estas, comunes en los escapes de incendio en comunidades de todo el país. Todos los escapes de incendio exteriores conllevan interrogantes fundamentales: en última instancia, ¿puede el escape de incendio ser usado de manera eficaz cuando sea necesario, ya sea por los ocupantes del edificio o por los socorristas de emergencias? ¿Se mantendrá anexado al edificio si se utiliza? ¿Funcionarán conjuntamente las piezas que lo componen? ¿Puede ser útil para los ocupantes de un edificio que tengan discapacidades?

Esos interrogantes, en y por sí mismos, no constituyen un problema. Para los profesionales en incendios, la dificultad—y nuestra actual problemática con esta heredada tecnología de los escapes de incendio es que, con demasiada frecuencia, no tenemos respuestas.

Cómo hemos llegado aquí: una breve historia de los escapes de incendio
La construcción de edificios de mayor altura en los Estados Unidos comenzó a mediados del siglo diecinueve. Muchos de esos edificios tenían solamente una única escalera de madera abierta, ubicada en el centro del edificio y conectada a los corredores que utilizaban los apartamentos o áreas de oficinas, generalmente con una configuración de “sin salida”. Si bien eran convenientes, estas escaleras eran el único y exclusivo medio de acceso y egreso diario, y presentaban un doble riesgo: ser tanto inutilizables en un incidente de incendio como de ser un medio para la rápida propagación vertical del fuego. A ello le siguieron diversos incendios fatales.

En 1860 en la Ciudad de Nueva York, se requirió que todos los edificios residenciales de más de ocho unidades tuvieran un medio de escape secundario. Ese mismo año, Baker y McGill, de la Ciudad de Nueva York, patentaron un diseño que incorporaba casi la totalidad de los componentes principales de lo que actualmente reconocemos como el tradicional escape de incendio de balcones de hierro exterior, que constaba de una serie de escalones o escaleras ajustables o estacionarios.

En respuesta a un impulso para la reforma de viviendas, en 1867 el Estado de Nueva York aprobó la primera Ley de Casas de Vecindades (Tenement House Act), que obligaba a que todos los inquilinatos nuevos y existentes estuvieran equipados con escapes de incendio. Sin embargo, se consideró que la ley no era lo suficientemente específica como para ser efectiva, ya que solamente requería que los inquilinatos tuvieran escapes de incendio o “algún otro” medio de egreso aprobado. Se incluyeron mejoras graduales en la segunda Ley de Casas de Vecindades, aprobada en 1870 y en sus enmiendas, adoptadas en 1887.

El Día de San Patricio, en 1899, se desencadenó un incendio en el segundo piso del Hotel Windsor, de la Ciudad de Nueva York. El fuego se propagó rápidamente, dejando atrapadas a una gran cantidad de personas que estaban en los pisos superiores del edificio de siete plantas. El edificio contaba con una pequeña cantidad de escapes de incendio, aunque algunos informes indicaban que las oleadas de fuego que salían de las ventanas habían provocado su calentamiento excesivo, lo que impedía que pudieran ser utilizados. Las habitaciones para huéspedes estaban equipadas con sogas previstas para ayudar a la gente a ir hacia un lugar seguro; la dificultad de descender por una soga fue descripta, en uno de los relatos, como “un acto que solamente puede requerirse de un gimnasta”, e incluso muchos de quienes podían hacerlo eran obligados a soltar la soga cuando esta quemaba sus manos. Como resultado, muchas personas cayeron y murieron o saltaban de las ventanas para escapar de las llamas; el derrumbe de la estructura mató a muchas otras personas. Murieron casi 90 personas en el incidente. El incendio dio lugar a un torrente de protestas sobre el uso de sogas como un medio de escape. Se presentaron nuevos proyectos de ley para escapes de incendio en el Estado de Nueva York, que incluían las más pormenorizadas disposiciones sobre su construcción y uso.

Un momento decisivo para la seguridad de los edificios tuvo lugar el 26 de marzo de 1911, cuando un incendio ocurrido en Triangle Waist Co., una fábrica de indumentaria ubicada en los pisos octavo, noveno y décimo de un edificio de once pisos situado en la parte meridional de Manhattan, se llevó la vida de casi 150 empleados, en su mayoría niñas y mujeres jóvenes. La atroz pérdida de vidas fue atribuida en parte a la existencia de salidas interiores inadecuadas y bloqueadas, así como a un escape de incendio situado en la parte posterior del edificio que se derrumbó y provocó la muerte de una gran cantidad de personas que intentaban huir. Fueron consideradas responsables de la tragedia, la falta de una autoridad global en la Ciudad de Nueva York que exigiera el cumplimiento de las reglamentaciones y la vaguedad de la ley sobre salidas. El Artículo 103 del código de edificación de la ciudad incluía en su texto “correctos y suficientes” escapes de incendio, escaleras u otros medios de egreso, y dejaba que los términos “correcto/a y suficiente” fueran interpretados por cada inspector.

El impacto del incendio de Triangle repercutió más allá de Manhattan y del Estado de Nueva York. NFPA comenzó a debatir sobre la seguridad humana después de lo sucedido en Triangle, y ello incluyó una determinante evaluación de los escapes de incendio. Esas conclusiones, publicadas en el informe trimestral de la asociación en 1911, fortalecían la actitud del público acerca de la disminución de la seguridad del escape de incendio exterior:

Desde hace ya largo tiempo se ha reconocido que el habitual formato exterior de la serie de escalones de tipo escalera de hierro anclada en el costado del edificio resulta lamentablemente engañosa. Durante un cuarto de siglo este dispositivo ha sido el principal elemento de tragedia en todos los incendios que provocaron pánico. Atravesando sucesivamente las aberturas de ventanas de cada uno de los pisos, las lenguas de fuego que salían de las ventanas de cualquiera de los pisos obstruían el descenso de todos los que estaban en los pisos situados encima. Sus plataformas generalmente son lastimosamente pequeñas y una desesperada corrida hacia ellas desde varios pisos al mismo momento hace que se congestionen y atasquen irremediablemente. Se trata de una improvisada creación fruto de la avaricia de los dueños de propiedades; y que con frecuencia se vuelven aún más inútiles por la ignorancia de los arrendatarios que las abarrotan de botellas de leche, neveras y otras obstrucciones.

Como resultado del incendio en Triangle y de otros incendios en los que hubo gran cantidad de víctimas fatales, NFPA creó el Comité sobre Seguridad Humana en 1913, a fin de que se formularan las recomendaciones requeridas para mejorar la seguridad en las salidas de edificios. Los informes del comité se publicaron en forma de panfletos, entre ellos el de “Escaleras exteriores para salidas de incendio” (1916). El comité no reconocía a los escapes de incendio como un medio de egreso aprobado para las construcciones nuevas y solamente los recomendaba para corregir deficiencias en los edificios existentes.

El trabajo del comité contribuyó a la creación del Código de Salidas de Edificios, que fue aprobado en 1927. El Código de Salidas de Edificios incluía una nueva disposición que especificaba a las escaleras exteriores, y no a los escapes de incendio, como un medio de egreso exterior. Las escaleras exteriores aplicaban criterios más rigurosos que los de los escapes de incendio respecto del ancho, huellas, contrahuellas, materiales de construcción y de la protección de la escalera desde un espacio interior del edificio mediante aberturas certificadas. El código también incluía lo siguiente:

201. Las escaleras exteriores especificadas en este código son muy superiores a los escapes de incendio ordinarios que comúnmente se encuentran en los edificios existentes. Estos escapes de incendio absolutamente inadecuados, endebles, pronunciados, no protegidos contra el fuego en la estructura a la que están adosados, constituyen, realmente, una amenaza, ya que dan una falsa sensación de seguridad. Dichos escapes no están reconocidos en este código.

Aún las mejores escaleras exteriores construidas de acuerdo con lo establecido en este código presentan serias limitaciones que pueden evitar su efectivo uso al momento de un incendio. Incluso cuando se brinde protección en las ventanas, las condiciones pueden ser tales que el fuego (o el humo proveniente del fuego) en los pisos inferiores puede hacer que las escaleras se vuelvan intransitables antes de que los ocupantes de los pisos superiores hayan tenido tiempo para utilizarlas. Las escaleras exteriores pueden estar bloqueadas por nieve, hielo o aguanieve en el momento en que son más necesarias.

Es probable que las personas que utilizan las escaleras exteriores a una altura considerable sientan temor y desciendan, si lo hacen, a una velocidad mucho menor que con la que lo hacen por escaleras situadas en el interior de un edificio. . . Los ocupantes de edificios no las utilizarán tan prestamente en caso de incendio como lo harán con el medio de salida habitual, la escalera interior. Debido a que se trata de un dispositivo de emergencia de uso no habitual, su mantenimiento puede no ser tenido en cuenta.

A pesar de sus defectos, los escapes de incendio han funcionado de manera eficaz durante décadas y han contribuido a salvar innumerables vidas durante incidentes de incendio y otras emergencias. El incendio ocurrido en 1946 en el Hotel LaSalle de Chicago mostró, al menos, un éxito parcial de los escapes de incendio. El hotel de 1000 habitaciones fue construido en 1909 y se lo consideraba “el más confortable, moderno y seguro del área occidental de la Ciudad de Nueva York”. Se desató un incendio cerca del vestíbulo poco después de la medianoche que se propagó rápidamente; los trabajos de remodelación y la existencia de una escalera abierta permitieron que el denso humo subiera por la totalidad de altura de los 22 pisos del hotel, dejando a las escaleras intransitables. De las 61 personas que murieron en el incendio, la mayoría fallecieron por inhalación de humo. Aproximadamente 900 huéspedes pudieron abandonar el edificio, muchos de ellos a través de los escapes de incendio. Las fotografías periodísticas del incidente claramente mostraban filas de huéspedes moviéndose tranquilamente por los escapes de incendio en zigzag del edificio. El incendio llevó a que el municipio de la ciudad de Chicago promulgara nuevos códigos de edificación para hoteles y procedimientos para el combate de incendios, entre ellos la instalación de sistemas de alarma automática e instrucciones para la seguridad contra incendios en el interior de las habitaciones de hoteles.

Uno de los últimos edificios de arquitectura trascendental que incluía escapes de incendio fue el Edificio del Commonwealth, actualmente conocido como Edificio de la Equidad, situado en Portland, Oregón. Diseñado por Pietro Belluschi, un reconocido arquitecto modernista, fue uno de los primeros edificios de altura construido con metal y vidrio (originalmente de 12 pisos, posteriormente de 14) edificado hasta la fecha. Fue finalizado en 1948 con grandes elogios y en 1982 recibió el premio a los 25 años otorgado por el Instituto Americano de Arquitectos. Figura también en el Registro Nacional de Lugares Históricos.

El edificio fue un ejemplo precoz de un sistema de muro de cortina sellado, con aire acondicionado central—un diseño que en apariencia no es congruente con los escapes de incendio exteriores. Sin embargo, no son muchas las construcciones que se han efectuado antes, y los códigos no han sido, aparentemente, actualizados para que contemplen, o prohíban el uso de, escapes de incendio exteriores. Presumiblemente, quien desarrollaba el proyecto lo que quería era maximizar la dimensión de área rentable e insistía en que se utilizaran escapes de incendio en lugar de escaleras interiores. Se considera que el resultado es un raro ejemplo de un rascacielos de metal y vidrio posterior a la Segunda Guerra Mundial que cuenta con un escape de incendio.

De aquí en adelante
El Código de Seguridad Humana ha favorecido a las escaleras interiores protegidas para las construcciones nuevas desde su inicio en 1927, disposiciones que se mantienen en el código hasta la actualidad. Sin embargo, los escapes de incendio exteriores pueden ser agregados a la mayoría de los edificios —las ocupaciones educacionales son una excepción notable—cuando esté permitido por las autoridades locales. En esos casos, no obstante, no se permiten escaleras, debido a la dificultad de utilizarlas en condiciones adversas; ni el acceso a través de ventanas, que también presenta dificultades para llegar de manera segura al escape de incendio. Solamente se permite el acceso a través de puertas que cumplan con los criterios especificados.

El código también incluye disposiciones sobre la inspección y mantenimiento de los escapes de incendio. Como muchas otras características para la seguridad contra incendios, el mantenimiento de los escapes de incendio es esencial para garantizar su uso y su seguridad. Los escapes de incendio deben mantenerse libres de obstrucciones, debe haber un libre acceso dentro del edificio a través de puertas y ventanas, los protectores de aberturas resistentes al fuego deben estar debidamente instalados y debe mantenerse la integridad estructural del escape de incendio y sus anclajes a la estructura del edificio. Este es un enfoque crítico para la inspección de los escapes de incendio; en enero, una persona murió y dos resultaron gravemente heridas cuando se derrumbó un escape de incendio del tercer piso de un edificio de apartamentos de Filadelfia. Durante una celebración de cumpleaños, las personas habían salido al balcón del escape de incendio para fumar.

La oxidación es la principal amenaza para el deterioro del hierro fundido y forjado. Si se deja que el proceso continúe, el metal puede deteriorarse completamente. La prevención y eliminación de herrumbre es el primer paso para la conservación de los escapes de incendio. La oxidación también se produce cuando la humedad se acumula en juntas, grietas y fisuras de la mampostería a la que está anclado el escape de incendio. La corrosión puede provocar el deterioro del hierro y de la mampostería, lo que debilita el anclaje a la estructura. Los pernos deberían ser quitados e inspeccionados como parte de la inspección regular de los escapes de incendio. Podría ser necesario reemplazar la ferretería si el deterioro es serio. El descuido durante un largo plazo puede llevar a una falla estructural que incluya la pérdida del anclaje al muro de mampostería.

Si bien la misma exposición al fuego es ampliamente reconocida como una amenaza a la integridad estructural del hierro forjado expuesto, dicha consideración no era generalmente tenida en cuenta en la instalación de escapes de incendio. No hay antecedentes claros sobre este tema. Es evidente que el impacto de las llamas sobre la estructura de soporte durante un período de tiempo suficiente eventualmente debilitaría el material y provocaría una falla. Ese tema, sin embargo, no ha sido contemplado en los criterios de instalación de escapes de incendio más allá de las protecciones para aberturas requeridas, presumiblemente en beneficio de los ocupantes del edificio que podrían estar expuestos durante el uso del escape de incendio.

Durante largo tiempo se ha presumido que el uso de escapes de incendio por parte del público en condiciones de emergencia es una experiencia indeseable, a juzgar por el informe del Comité sobre Seguridad Humana de hace casi 100 años. Esta no es una inquietud infundada, dado que generalmente no se entrena a las personas ni se hacen simulacros sobre el uso de los escapes de incendio. El comportamiento humano también indica que muchas personas considerarán extremadamente indeseable salir por un escape de incendio, en general sobre una plataforma enrejada a muchos pies de altura y frecuentemente con un clima adverso o en la oscuridad. Estos dispositivos han sido claramente previstos para ser utilizados como un último recurso en caso de que las vías interiores se vuelvan inutilizables. Por estos motivos, el mantenimiento de un acceso libre y la prueba regular de los componentes operativos es aún más importante para evitar lesiones durante el egreso de ocupantes inexpertos y no entrenados, así como de los socorristas que podrían necesitar hacer uso de los escapes de incendio en una emergencia.

En general, puede argumentarse que, basándose en una revisión de diversos códigos actuales, los requisitos de inspección y mantenimiento de escapes de incendio son incongruentes y podrían hacerse más estrictos. Si bien los códigos generalmente son claros acerca de que no pueden usarse escapes de incendio en las construcciones nuevas, son pocos los requisitos que contemplan a los escapes de incendio de los edificios existentes. Tanto NFPA 1, Código de Incendios, como NFPA 101 solamente incluyen referencias generales para el mantenimiento de escapes de incendio. Aparte del requisito de mantener los medios de egreso libres de obstrucciones, no hay criterios específicos sobre la frecuencia o método para la inspección, pintura o prueba de carga de los escapes de incendio. (La edición 2012 del Código Internacional de Incendios ha ampliado en cierta medida los criterios para inspección, prueba y mantenimiento.) Una revisión general y la modificación de los códigos podrían representar una mejora significativa en los criterios para inspección y mantenimiento, y la correspondiente mejora en la seguridad humana para los ocupantes de edificios y los socorristas. Grupos tales como la Asociación Nacional de Escapes de Incendio están trabajando para una mayor concientización y ofrecen entrenamiento y servicios sobre escapes de incendio. Reglas y reglamentaciones normalizadas pueden contribuir a aumentar el tiempo de vida de los escapes de incendio existentes.

Además, criterios adicionales para la mejora de la protección y el arreglo del acceso a los escapes de incendio al momento de llevar a cabo las renovaciones de un edificio deberían estar específicamente incluidos en los códigos de incendio y en los códigos de edificación existentes. Dichas renovaciones pueden ser la única oportunidad razonable de mejorar el nivel de seguridad que brindan los escapes de incendio durante el tiempo de vida de un edificio.

Los escapes de incendio continuarán siendo parte del entorno de un edificio en los próximos años y es fundamentalmente importante que sean apropiadamente inspeccionados y mantenidos, y que nuestros códigos y normas se mantengan vigilantes en la formulación de los criterios para así hacerlo a los propietarios y a la comunidad responsable de hacer cumplir lo establecido. Asimismo, al momento de llevar a cabo las renovaciones principales de un edificio, los profesionales de diseño deberían eliminar el uso de escapes de incendio mejorando otras características para el egreso, siempre que fuera factible. Nos arriesgamos a una tragedia mayor al permitirles que se oculten a plena vista.

Carl Baldassarra es un ingeniero certificado en protección contra incendios de Chicago

– See more at: http://www.nfpajla.org/?activeSeccion_var=50&art=634#sthash.cRdMvFLG.dpuf

Posted in Edificacion, Historia, Incendios, Incendios Urbanos, Legislacion, NFPA Journal, Prevencion, Señalizacion Emergencias, Siniestros Importantes | Comentarios desactivados en Característica de Seguridad/Riesgo de Seguridad. Escaleras de incendios.

Catalogo instalaciones contra incendios FIREX

Posted by Firestation en 09/01/2015

image006

Posted in Agentes Extintores, Agua, Espumas, Extintores, Gases / CO2, Halones y Sustitutos, Marcas Comerciales, Materiales, Polvo Quimico, Prevencion, Señalizacion Emergencias, Sistemas fijos de extincion | Comentarios desactivados en Catalogo instalaciones contra incendios FIREX

 
A %d blogueros les gusta esto: