FireStation.

La biblioteca del parque.

  • nuevos mensajes por correo.

    Únete a otros 659 seguidores

  • Archivos

  • Estadísticas del blog

    • 1,819,712 hits
  • Visitas

  • Meta

Archive for the ‘Materiales’ Category

Tecnicas de uso de camillas para el rescate de victimas en entorno de estructuras colapsadas

Posted by Firestation en 26/04/2017

Posted in M. Rescate/P. Aux., Materiales, Rescate, Tecnicas de Intervencion | Comentarios desactivados en Tecnicas de uso de camillas para el rescate de victimas en entorno de estructuras colapsadas

Tecnica y Formacion en Espeleologia

Posted by Firestation en 25/03/2017

Posted in Cuerdas y Nudos, Manuales, Rescate, Tecnicas de Intervencion | Comentarios desactivados en Tecnica y Formacion en Espeleologia

Simulador de ventilacion TEMPEST

Posted by Firestation en 02/09/2016

simulador tempest

Posted in Equipos/Instrumentos, Incendios, Incendios Urbanos, Marcas Comerciales, Materiales, Simuladores, Tecnicas de Intervencion, Ventiladores, VPP | 2 Comments »

Excarcelacion: Sistemas de seguridad en vehiculos. Turismos.

Posted by Firestation en 20/06/2016

excar

Posted in Descarcelacion, M. Descarcelacion, Rescate en Vehiculos. Descarcelacion., T. Descarcelacion, Tecnicas de Intervencion | Comentarios desactivados en Excarcelacion: Sistemas de seguridad en vehiculos. Turismos.

Análisis de diferentes tipos de instalaciones para la extinción, por parte de los servicios de bomberos, de incendios de interior utilizando bombas de alta y baja presión.

Posted by Firestation en 19/04/2016

alonso

En los cuerpos de bomberos existe actualmente una polémica real sobre la valoración del caudal de agua necesario para la extinción de incendios de interior. La definición de dicho caudal así como el modo de trabajo que permita obtenerlo, es materia de debate.

Existe un consenso en algunos aspectos fundamentales: debe ser un caudal manejable y suficiente para realizar una extinción segura y eficaz. A partir de este punto de encuentro común, la polémica está servida. Existe un caudal máximo manejable por una pareja de bomberos. Existe un caudal mínimo necesario para extinguir un incendio concreto. Existen dos posibles modos de operar una bomba centrífuga de extinción: alta presión y baja presión. Existen diferentes tipos de mangueras para transportar el agente extintor, en este caso el agua, desde la autobomba hasta el incendio. Definir ese caudal ideal que permita extinguir un incendio de interior con eficacia y seguridad es la clave para resolver el debate.

Este estudio, a través de una revisión de líneas de investigación y trabajos realizados por diferentes organismos, asigna un valor numérico a ese caudal ideal. Por otra parte, para la redacción de este trabajo, se han realizado pruebas reales específicas en las que se ha estudiado hasta qué punto, con los materiales y equipos disponibles actualmente, es posible aproximarse a lo que se ha dado en llamar caudal ideal.

De los resultados de este estudio puede concluirse que, si se quiere disponer o al menos aproximarnos a ese caudal ideal, manejable, que ofrezca la máxima eficacia y seguridad en caso de producirse una situación de emergencia grave, es necesario utilizar líneas de ataque y seguridad de al menos 38 mm, operando la autobomba en modo baja presión.

Posted in Agentes Extintores, Agua, Bombas, Bombas Vehiculos, Flashover, Flashover/Backdraft, Hidraulica, Incendios, Incendios Urbanos, Instalaciones de Agua, Materiales, Monografias / Articulos / Investigaciones, Tecnicas de Intervencion, Teoria del fuego | Comentarios desactivados en Análisis de diferentes tipos de instalaciones para la extinción, por parte de los servicios de bomberos, de incendios de interior utilizando bombas de alta y baja presión.

Rescate en altura. CEIS Guadalajara.

Posted by Firestation en 10/02/2016

Todos los documentos que aquí se publican, se encuentran protegidos por una licencia Creative Commons del tipo BY-NC-SA, de forma que se permite su copia, distribución, comunicación y transformación, siempre que se acredite su autoría (CEIS Guadalajara y colaboradores correspondientes), no se utilice con fines comerciales y la obra o sus transformaciones se compartan bajo una licencia idéntica a ésta.

CEIS

Posted in Cuerdas y Nudos, Formacion, M. Rescate/P. Aux., Manuales, Materiales, Rescate, Tecnicas de Intervencion | Comentarios desactivados en Rescate en altura. CEIS Guadalajara.

Proyecto de formacion libre para bomberos. Temario manuales de formacion bomberos CEIS Guadalajara.

Posted by Firestation en 17/01/2016

Todos los documentos propios que aquí se publican, se encuentran protegidos por una licencia Creative Commons del tipo BY-NC-SA, de forma que se permite su copia, distribución, comunicación y transformación, siempre que se acredite su autoría (CEIS Guadalajara y colaboradores correspondientes), no se utilice con fines comerciales y la obra o sus transformaciones se compartan bajo una licencia idéntica a ésta.

 

Posted in Agentes Extintores, Equipos proteccion, Fisica y Quimica del Fuego, Formacion, Hidraulica, Incendios, Manuales, Materiales, MM.PP., Primeros Auxilios, Rescate, Riesgo Electrico, Riesgo Nuclear, Riesgo Quimico, Sistemas fijos de extincion, Tecnicas de Intervencion, Teoria del fuego | 1 Comment »

Comportamiento de los nudos

Posted by Firestation en 20/10/2015

nudos

Posted in Cuerdas y Nudos, Materiales, Rescate | Comentarios desactivados en Comportamiento de los nudos

Tabla de rescate JOTA

Posted by Firestation en 30/09/2015

jota

La tabla JOTA nace desde un conocimiento profesional en el rescate de víctimas de accidentes.

Las nuevas técnicas de rescate en el tratamiento de víctimas de accidentes con posibles politraumatismos nos lleva a inmovilizar y mantener el eje cuello-espalda-cadera con la mayor alineación posible para evitar a toda costa lesiones medulares durante la extracción del habitáculo, sea cual sea su circunstancia (tren, avión, derrumbe, caídas o tráficos).

Con las técnicas anteriores se intentaba rescatar a la víctima lo antes posible, sin valorar las posibles lesiones ocasionadas durante ese proceso, llegando a generar lesiones mayores durante el rescate que el propio trauma del accidente. Las nuevas técnicas de rescate empleadas por los servicios de emergencia, en cambio, consisten en inmovilizar y estabilizar a la víctima en el lugar del accidente, para evitar lesiones durante el rescate, y posteriormente evacuarlo hasta el centro hospitalario más próximo.

 Existen en el mercado diferentes elementos profesionales para la excarcelación del accidentado en las circunstancias y habitáculos que sean. La rapidez apremia en esos momentos vitales.

Las tablas de rescate existen desde hace aproximadamente veinte años, siendo desde entonces efectiva y primordial en las intervenciónes. Ahora bien, las tablas que existen en el mercado son rectas, y de ahí nace la idea de crear una tabla de rescate curva con una incidencia en grados que no repercute en la espalda del accidentado, siendo la función de la tabla la penetración en vehículos, calzadas o superficies colapsadas o de difícil acceso y la envoltura de la víctima sin movimientos bruscos indeseados.

La tabla de rescate JOTA corta tiene la peculiaridad de tener una medida polivalente para cualquier respaldo de asiento y fisionomía de víctima (alt@,baj@,delgad@,ect…), pudiéndose utilizar también en inmovilizaciones más sencillas para traslado sanitario(viviendas).

 

Tabla de rescate JOTA corta

Diseñada especialmente para trabajar en accidentes de tráfico independientemente del tipo de vehículo.

El diseño del cabezal permite adaptar rápido y eficazmente cualquier tipo de inmovilizador tetracameral (dama de Elche).

Tabla de rescate JOTA S1C Tabla de rescate JOTA S1C
Tabla de rescate JOTA S2C Tabla de rescate JOTA S2C

 

La tabla de rescate JOTA corta dispone de un accesorio que permite fijar con velcro al cabezal sin tener que mover a la víctima.

Accesorio JOTA para inmovilizadores tetracamerales Accesorio JOTA para inmovilizadores tetracamerales

Tabla de rescate JOTA larga

El diseño de esta tabla espinal, gracias a su ergonomía, permite envolver a la víctima sin movimientos bruscos en cualquier tipo de superficie (calzada, superficies abruptas, etc…).

 

Forma junto con la tabla de rescate JOTA corta con cabezal el dispositivo idóneo para las extracciones de víctimas en vehículos, sea cual sea su estado tras el accidente ( vuelcos, alcances, laterales, etc…).

 

Tabla rescate JOTA S1L Tabla rescate JOTA S1L

 

Existe además otro modelo con una mecanización para camillas de rescate vertical.

Tabla rescate JOTA S2L Tabla rescate JOTA S2L

 

El último modelo de tabla de rescate JOTA larga es de tamaño reducido, destinado a víctimas de menor estatura y que permite las mismas funciones que la anterior.

Tabla de rescate JOTA S1P Tabla de rescate JOTA S1P

Posted in Descarcelacion, M. Descarcelacion, M. Rescate/P. Aux., Marcas Comerciales, Materiales, Rescate, Rescate en Vehiculos. Descarcelacion. | Comentarios desactivados en Tabla de rescate JOTA

Humectantes y retardantes. Mecanismo de actuacion en el incendio.

Posted by Firestation en 28/09/2015

Esta entrada comprende la recopilacion de varios articulos publicados originalmente en FuegoLab http://fuegolab.blogspot.com.es/ Bitácora de divulgación científica sobre incendios forestales y experimentos de combustión en laboratorio.
Por su especial interes y claridad de explicaciones me ha parecido relevante incluirlo aqui para mayor conocimiento de todos aquellos que trabajamos en los fuegos forestales.

Hace unos días se divulgó en redes sociales un interesante vídeo del U.S. Forest Service donde se muestra el efecto de los denominados “productos químicos retardantes de llama”. El verano pasado escribí un post al hilo de un estudio divulgado en medios generalistas sobre los efectos ecológicos de estos productos al ser lanzados por los medios aéreos durante los incendios forestales. Comienzo una serie de secuelas de “Retardando que no es poco” y nos vamos a poner un poco más técnicos para saber cómo actúan dichos productos y por qué suponen una gran ayuda para los medios de extinción si se emplean con sentido común, teniendo en cuenta sus ventajas, inconvenientes y también sus limitaciones.
Fuente

 

En el mercado hay una abundante gama de productos químicos retardantes de llama y, sin querer perjudicar a ningún fabricante, me limitaré a comentar los que tradicionalmente el MAGRAMA y las Comunidades Autónomas en España han venido usando en sus bases sin perjuicio de nuevos productos.
La división clásica de los tipos de productos químicos empleados en la lucha contra incendios ha sido atendiendo a su diferente efecto durante la combustión y su uso en los incendios:
  • Retardantes de corto plazo (generalmente los encontramos formando espumas o geles) debido a que su efecto dura poco tiempo y su eficacia desaparece al evaporarse el agua. Por tanto suelen usarse en ataque directo a las llamas.
  • Retardantes de largo plazo, su efecto es más duradero porque afecta al proceso químico de combustión y no depende de la presencia de agua para mantener su eficacia, Por tanto suelen usarse en ataque indirecto como apoyo a lineas de control en incendios.
En este post hablaremos de los retardantes de corto plazo y en siguientes entregas describiremos los retardantes de largo plazo
En primer lugar debemos explicar por qué el agua es un buen extintor de incendios. Es bien conocido el poder del agua para disminuir la inflamabilidad de los combustibles, dificulta su capacidad de arder pero también disminuye la emisión de energía producida en fase de llama en caso de un frente activo. Cuanto más pequeña sea la gota de agua en contacto con el sólido, aumenta la cantidad de superficie de agua expuesta al calor y por tanto mayor es su capacidad de “robar” energía y enfriar el frente de llama. Este vídeo, que ya he puesto en una entrada anterior, muestra la eficacia del agua (árbol regado a la derecha, frente a no regado a la izquierda) en un fuego doméstico de un árbol de Navidad:
Sin embargo, el agua sin aditivos tiene importantes limitaciones cuando se enfrenta a un fuego forestal. En primer lugar porque debido a su elevada tensión superficial y baja viscosidad, drena rápidamente al suelo al contactar con el combustible, que además suele presentar sustancias impermeables que evitan la penetración de líquidos; en segundo lugar porque la energía desprendida por el frente de llama en muchas ocasiones es más que suficiente para evaporar el agua antes incluso de que entre en contacto con el combustible, llevando a cero su capacidad de humectar la vegetación y afectar a la propagación del fuego; y en tercer lugar por el efecto erosivo del aire sobre la partícula de agua, que hace que se disgregue en pequeñas gotas, a su vez fácilmente arrastradas por la propia convección del incendio. Además, en el medio forestal, la dosis de aplicación de agua es limitada ya que no se dispone de bocas de presión para incendios (hidrantes) como en el medio urbano. Es evidente que, aun con dificultades, si dispusiéramos de cantidad de agua ilimitada se termina sofocando un incendio ¡Pero esto es casi imposible en el medio forestal! Se calcula que las dosis aplicables para ser eficaces oscilan entre 1 y 2 litros por metro cuadrado (¡lo que le echas a tus plantas cuando las riegas!) ya que, al tener cantidades de agua disponibles limitadas, aplicar mayores dosis sería en detrimento de la superficie tratada. En estas circunstancias el agua necesita ayuda, su efecto humectante no es suficiente.

Pero ¿que ventajas tiene una espuma con respecto al agua si prácticamente son agua? Los retardantes de corto plazo son las denominadas “espumas” que se consiguen mediante la aplicación al agua de productos químicos que pueden denominarse espumógenos o humectantes (ambos son el mismo producto ya que sólo se diferencian en la dosis de concentrado añadido al agua) . Son productos tensoactivos cuyo objetivo es disminuir la tensión superficial del agua, esto es, adherirse lo mejor posible al combustible para que el agua impregne bien por capilaridad y se mantenga en contacto con el mismo ¿Cómo lo consigue? Existen sustancias químicas denominadas anfilílicas, esto es, tienen doble afinidad, polar-no polar. Esto les permite adherirse a las moléculas de agua por su enlace polar y orientarse hacia las zonas de interfase con aire en su zona apolar, formando burbujas.

Moléculas anfilílicas que en contacto con el aire se orientan formando burbujas
Formación de una pompa de jabón, base química de una espuma humectante empleada en la lucha contra incendios Fuente

 

Por tanto el poder humectante de la espuma se debe al “anclaje” de las cadenas apolares sobre la superficie que se desea mojar, así se impide que el agua que se aplica sobre la vegetación forme gotas que resbalen sin adherirse, lo que anularía la eficacia del tratamiento. La formación de la película de espuma sobre la superficie es también una ventaja porque disminuye la disponibilidad de oxígeno superficial para producir llama. Pongamos un ejemplo sencillo. Si tras una dura jornada de trabajo (por ejemplo apagando un fuego) nos lavamos las manos sin jabón, necesitaremos gran cantidad de agua para desprender la suciedad. El jabón forma espuma y permite que penetre el agua en los poros de la piel, facilitando la limpieza de la suciedad con menor cantidad de agua (también es el principio activo de los detergentes para la ropa) . El efecto en la vegetación es similar, obligando además al fuego a consumir más energía para evaporar el agua disponible y permitiendo por tanto reducir el volumen necesario de agua para humectar la misma superficie.

Ejemplos de cómo la disminución de la tensión superficial le permite
a la espuma adherirse mejor al combustible (fotos @J_Enfedaque)

De entre la gran variedad de espumas usadas en la lucha contra incendios, las usadas en extinción de incendios forestales son del grupo denominado “espumas mecánicas” o “de aire” ya que es una solución de agua, espomógeno concentrado (tensoactivo) y aire. La forma de introducir el aire en la disolución se hace de manera mecánica, esto es, necesitamos algún tipo de dispositivo que introduzca aire en la mezcla ¿creéis que esto es complicado?

Si este tipo puede generar espuma y además hacerse un selfie, tú también puedes.  Fuente

 

Es algo parecido a la espuma del baño generada por el jabón líquido. Cuando añadimos, sin más, el jabón al agua de la bañera, sólo se genera espuma si agitamos la superficie del agua, introduciendo con ello aire del exterior. En este caso el medio mecánico adquiere la forma de “brazo humano mezclador”. Otra opción, que yo usaba siempre con los baños mi hija, es añadir el jabón directamente al grifo de agua conforme está saliendo, lo cual arrastra el aire hacia la bañera generando espuma con mucha más facilidad. Como ahora casi todos los grifos tienen en la boquilla una rejilla expansora, la entrada de aire es mucho más eficaz ya que el chorro de agua procedente del grifo lleva ya aire mezclado. Este sencillo sistema mecánico es lo que se usa cuando se aplica la espuma desde medios terrestres, ya sea un camión autobomba o una mochila manual: rejillas expansoras a la salida de la manguera o la lanza de la mochila ¿fácil no? Una buena expansión con estas lanzas profesionales puede ampliar el volumen del agua ¡entre 20 y 200 veces!
Expansor doméstico similar a los utilizados por los bomberos forestales Fuente
Aplicación de espumas por medios terrestres Fuente
Esquema (Fuente) y foto (@J_Enfedaque) de dispositivo profesional para aplicación de espumas

 

En el caso de los medios aéreos la expansión mecánica de la espuma es algo diferente y más parecido al grifo del baño. Los helicópteros de extinción disponen de un dosificador de espumógeno concentrado para la descarga del llamado “helibalde” o “bambi”, esa “bolsa” llena de agua que cuelga de la aeronave y que vemos con frecuencia en los reportajes de televisión. Cuando se realiza una descarga, el espomógeno se aplica automáticamente con la dosis programada, con lo cual lo que se lanza es ya una mezcla preparada para convertirse en espuma ¿cómo? ¿un expansor XXXL? Mucho más sencillo. La espuma se expande simplemente por gravedad: la mezcla de agua y espumógeno entran en contacto con el aire a la alta velocidad generada por el peso del agua del helibalde y el avance de la aeronave, convirtiéndose en el expansor mecánico perfecto.
Fuente

 

La espuma tiene un tiempo corto antes de empezar a “romperse” (o tiempo de drenaje de la espuma, de ahí su clasificación como “de corto plazo”). Siguiendo con el símil de la bañera, todos hemos comprobado alguna vez que si echamos mucho jabón, al principio la capa superficial de espuma es muy densa y abundante (como en el baño del amigo Cesc), incluso podemos colocar objetos poco pesados (algún juguete de bebé por ejemplo) que no entra en contacto con el agua de la bañera (disminución de la tensión superficial). Pero si dejamos unos minutos sin remover, deja de entrar aire externo y aumenta su tensión superficial, ya no se mantienen encima los juguetes más pesados de los niños porque la espuma se empieza a “romper” (a “drenar”) y empezamos a ver el fondo de la bañera. Algo parecido también ocurre con la espuma de cerveza, y es lo que diferencia una cerveza bien “tirada”, que mantiene su espuma la duración de la caña o la pinta, de otra que se rompe (drena) con facilidad y terminamos sin rastro de espuma en el vaso.
Cerveza con espuma que empieza a romperse frente a una buena caña Fuente

 

Este efecto es mucho más evidente cuanta menos concentración de espumógeno tengamos (menos cantidad de jabón) o menor cantidad de aire hayamos conseguido introducir en la mezcla (cerveza mal tirada). Los espumógenos forestales son productos muy perfeccionados y las concentraciones eficaces son bajísimas, oscilando entre el 0,1% y el 1% en peso, esto es, menos de 1 gramo de producto por litro de agua es suficiente para generar una buena “fiesta de la espuma forestal”, cuando se expande correctamente claro. No obstante debido a las altas temperaturas en verano que se incrementan por la meteorología propia del incendio, la mezcla agua-concentrado drena con mayor facilidad, el agua se evapora y por tanto la espuma se “rompe” en un “corto plazo”. Aun así, un buen espumógeno con la dosis adecuada debería soportar sin drenar unos 30 minutos. Su aplicación se realiza por eso en ataque directo con presencia de medios terrestres ya que por sí sola sólo es capaz de extinguir fuegos de baja intensidad, por ejemplo en conatos, fuegos incipientes o flancos del incendio. En cambio suponen una gran ayuda a los medios terrestres al disminuir la intensidad del fuego, refrescar el ambiente y poder sofocar el fuego con otras herramientas como el batefuegos o haciendo una línea de defensa con mayor seguridad.
La brigada helitransportada es apoyada por descargas de espumas. Fuente

 

 

La expansión y eficacia de las espumas en la lucha contra incendios se contrasta mediante sencillas pruebas de laboratorio al compararlas con el agua. En el protocolo desarrollado en el INIA se aplican espumas a diferente concentración y dosis a una muestra de acícula de pino situada sobre una mesa de quemas. Para forzar un poco los productos y simular condiciones de verano alguno de los ensayos se realizan tras el paso de la muestra tratada por una estufa a 42ºC durante 30 minutos y comprobar con ello la facilidad o dificultad para drenar en condiciones similares a las que se aplican en campo comparando su eficacia para detener el fuego respecto al agua.

Ensayos INIA de coeficiente de expansión  y drenaje de espumas (arriba) y de eficacia de espumas (abajo).
La gráfica muestra la eficacia de la espuma con respecto al agua (línea azul)
Los productos químicos empleados en la lucha contra incendios es uno de esos casos poco frecuentes en el mundo forestal donde existe una verdadera cadena investigación-desarrollo-innovación, se utilizan equipos multidisciplinares para el desarrollo de productos y aplicaciones (químicos, físicos, forestales, industriales, etc.) y entran en contacto aspectos de la ciencia y de la técnica para solucionar un problema real en los que participan empresas y administración con un objetivo común: mejorar la seguridad de los bomberos forestales y la eficacia en la extinción de incendios.

Retardantes.

¿Por qué arden las plantas? A estas alturas ya deberíais saberlo, pero como hay nuevos seguidores que no se han leído todas mis entradas os refresco la memoria que en este tema se la debemos claramente a Prometeo. La típica reacción química que se produce cuando arde la vegetación es la siguiente:

Celulosa (CHO)n + Oxigeno (O2) + calor —–> Agua (H2O)+Dióxido de carbono (CO2)+Energía

Por tanto hacen falta estos tres elementos para que exista combustión con llama: el conocido triángulo del fuego: celulosa (vegetación), oxígeno y calor ¿Podemos interrumpir esta reacción en cadena? Al hablar de los retardantes de corto plazo, ya explicamos que la estrategia de las espumas es humectar y enfriar, esto es, actuar sobre el “calor” y en menor medida dificultar la llegada de “oxígeno” al entorno del combustible mediante la generación de una capa de espuma con baja tensión superficial. Pero los retardantes de largo plazo son mucho más sutiles, no en vano llevan mucha ciencia y tecnología detrás, basados en la química de esta reacción de combustión.

Los retardantes de largo plazo más utilizados en la lucha contra incendios son los denominados Polifosfatos. Son sales muy similares a los fertilizantes usados en agricultura y se preparan generalmente con concentraciones de 1:5 en agua, esto es, 200 ml de producto por cada litro de agua. El rojo contrasta muy bien con el verde o el amarillo de la vegetación, por eso se tiñen de colores rojizos para poder ser visualizados por el piloto, el coordinador de medios aéreos, el director de extinción y los propios bomberos forestales. De esta manera se puede planificar y dar instrucciones precisas de las sucesivas descargas de la aeronaves durante la extinción de incendios. Todos los colorantes, viscosantes, anticorrosivos que presenten deben ser biodegradables e inocuos para el medio ambiente y la salud de los combatientes, para lo cual las empresas tienen especial cuidado en la elaboración de sus productos que deben pasar unas exigentes pruebas de verificación antes de su salida al mercado o para optar a concursos públicos.

Su eficacia es independiente de la presencia de agua porque su acción es directa sobre el componente “combustible forestal” de la reacción de combustión vegetal. Por tanto se suele usar en ataque indirecto, esto es, para crear lineas de control antes de que llegue el frente de llamas, disminuir la intensidad del fuego y de esta forma poder ser controlado por los bomberos forestales. Pero ¿cómo lo hace? Creo que en el esquema de la Figura 1 lo vais a entender bien.

Figura 1. Esquema del funcionamiento de un polifosfato amónico durante un incendio forestal
Adaptado de Vicente Mans (2015) Apuntes Máster Fuego: Ciencia y Gestión Integral

 

Siguiendo los elementos generados en las diferentes reacciones, podéis comprobar cómo la “magia” de la química hace que la reacción en cadena habitual de oxidación de la celulosa (a la derecha del esquema) se interrumpa sin más que “secuestrar” los grupos -OH que la componen. Efectivamente, la sal amónica se descompone en amoniaco gaseoso y ácido polifosfórico, que tiene una gran avidez por “apoderarse” de los grupos -OH de las cadenas de celulosa del material vegetal. La celulosa no puede oxidarse en presencia de calor con lo que ¡no puede producirse llama porque no hay triángulo del fuego! El resultado es la formación de otro ácido, el ortofosfórico, y un residuo de carbón que aparece de color “negruzco” en contraste con el color “grisáceo” de la ceniza. De esta manera la celulosa se consume pero ¡sin generar llama! y no emite energía significativa en su combustión, con lo que poco a poco se va extinguiendo el frente. Pero el retardante sigue teniendo escondido un as en la manga. En el caso de que siga existiendo emisión de energía procedente de vegetación que arde, el ácido ortofosfórico se vuelve a transformar en ácido polifosfórico repitiéndose el proceso, con lo que tenemos una reacción en cadena “a la inversa”, esto es, en presencia de más calor el producto sigue siendo eficaz y termina por extinguir la llama, o al menos reducir mucho su intensidad.

El ensayo presentado es muy exigente ya que después de la aplicación del tratamiento con producto retardante a la acícula de pino, se introduce en estufa a 42ºC durante 90 minutos simulando condiciones de verano y es en ese momento cuando se procede al ensayo, eliminando por completo la acción humectante del agua (recordemos que la mezcla es un 80% agua). Pero si el producto es tan eficaz incluso sin agua ¿por qué no se detiene inmediatamente la combustión con llama y avanza unos centímetros, aunque con mucha menor intensidad? ¿Por qué a pesar de realizar descargas de retardantes con la aeronaves es necesaria la actuación de medios terrestres para sofocar definitivamente el fuego? La respuesta la podemos ver aquí:

Acícula de pino tratada con retardante de largo plazo y secada en estufa a 42ºC durante 90 minutos
Fotografía: Laboratorio de incendios forestales del INIA

En la fotografía se muestra la zona inferior de la capa de acículas tratadas, la que estaría más cercana al suelo en condiciones de campo. Podéis apreciar que el color rojizo del retardante no está perfectamente repartido, hay parte de las acículas poco impregnadas. Este es el punto débil de los retardantes de la largo plazo: que siga la reacción en cadena de combustión con llama en aquellas zonas no recubiertas de polifosfato amónico (parte derecha del esquema de la figura 1) y que por tanto la eficacia del retardante se vea limitada por la presencia de material no tratado que continúa ardiendo. En este reportaje del USDA Forest Service  se compara el comportamiento de una capa de acículas sin tratar respecto a una tratada: el retardante disminuye mucho la velocidad de propagación y la altura de llama media aunque no es infalible, puesto que la parte inferior de la hojarasca sin tratar termina por arder.

La acícula tratada con polifosfato amónico en esta demostración llevaba una semana secándose, con lo que el retraso de la propagación se debe exclusivamente a la presencia del retardante de largo plazo y su eficacia ha estado condicionada por su capacidad de impregnar la mayor cantidad de combustible posible. Se puede comprobar al final del ensayo la cantidad de combustible consumido en sendas bandejas, lo que indica la menor intensidad generada por el tratamiento y por tanto la mayor capacidad de los medios de extinción para realizar un ataque directo que termine extinguiendo el frente de llama.

 

Posted in Agentes Extintores, Espuma, Espumas, Incendios Forestales, Tecnicas de Intervencion | Comentarios desactivados en Humectantes y retardantes. Mecanismo de actuacion en el incendio.

Rescate en montaña. Descenso de una camilla.

Posted by Firestation en 28/08/2015

image107

Posted in Cuerdas y Nudos, M. Rescate/P. Aux., Manuales, Materiales, Primeros Auxilios, Rescate, Tecnicas de Intervencion | Comentarios desactivados en Rescate en montaña. Descenso de una camilla.

Videos de ergonomia en trabajos forestales. Uso correcto de herramientas

Posted by Firestation en 28/07/2015

130813 Brigadas  herramienta manual_tcm7-291944_noticia

:: Azada y Pulasky
> Cargas
> Desbrozadora
> Motosierra
> Trabajo con desbrozadora
> Trabajo con motosierra
> Motosierra desbroce
> Elementos de seguridad con motosierra
> El uso seguro y económico de la motosierra. STIHL

 

 

Posted in Equipos/Instrumentos, Formacion, Incendios, Incendios Forestales, Material Forestal, Materiales, Tecnicas de Intervencion, Videos | 2 Comments »

Extrication & new technology – ISO kick off meeting 2015

Posted by Firestation en 14/07/2015

vlcsnap-2015-03-22-10h44m34s44

Posted in Descarcelacion, Formacion, Materiales, Rescate en Vehiculos. Descarcelacion., T. Descarcelacion, Tecnicas de Intervencion | Comentarios desactivados en Extrication & new technology – ISO kick off meeting 2015

Proteccion individual contra caidas en altura.

Posted by Firestation en 15/06/2015

caida altura

Posted in Leg. Riesgos Laborales, M. Rescate/P. Aux., Materiales, Rescate | Comentarios desactivados en Proteccion individual contra caidas en altura.

Primeros auxilios para bomberos

Posted by Firestation en 10/06/2015

PAB

Posted in M. Rescate/P. Aux., Manuales, Primeros Auxilios, RCP | Comentarios desactivados en Primeros auxilios para bomberos

 
A %d blogueros les gusta esto: