FireStation.

La biblioteca del parque.

  • nuevos mensajes por correo.

    Únete a otros 730 seguidores

  • Archivos

  • Estadísticas del blog

    • 2.080.022 hits
  • Visitas

  • Meta

Archive for the ‘Equipos proteccion’ Category

¡La UNE EN 469 no basta!

Posted by Firestation en 16/07/2018

Por Ramón Torra Piqué, Dr. Ingeniero Industrial. https://www.interempresas.net/

El vestuario para la lucha contra el fuego de los bomberos, actualmente conforme a los ensayos propuestos en la vigente UNE EN 469: 2006, no garantiza la protección térmica en algunos casos durante la intervención, puesto que siguen ocurriendo lesiones por quemaduras, aunque las exposiciones al calor y llamas sean inferiores a las especificadas en la certificación de las prendas. En el último borrador de la nueva EN 469:2015, que no acaba de aprobarse por razones que desconocemos, no se modifican los parámetros de los ensayos, por lo cual la protección térmica no mejora y la consiguiente posibilidad de lesiones permanece.

¿Por qué ocurre esto? Los trajes de intervención están diseñados para proteger al bombero de la agresión del ambiente térmico en que se desarrolla la extinción de incendios, incluyendo la exposición al calor radiante, al calor de convección debido a los gases calientes y al de conducción por contacto con superficies calientes. El bombero puede recibir serias quemaduras por cada uno de estos tres modos de transmisión del calor o una combinación de los mismos, aunque lleve correctamente dispuestas sus prendas de protección y se coloque a una distancia apropiada del fuego (ver figura 1). La razón estriba en que el vestuario de protección tiene límites físicos definidos en su capacidad para proteger al usuario, los cuales son medibles, aunque durante la intervención el bombero no puede reconocer estos límites críticos hasta que ya ha experimentado la lesión por quemaduras.

Figura 1: Bomberos en acción durante la extinción de un incendio en interiores.

En el presente artículo pretendo definir el concepto de quemadura por efecto del calor, exponer como se producen estas frecuentes lesiones térmicas y la influencia que tiene la humedad en acelerar y agravar el proceso de destrucción del tejido dérmico afectado; a pesar que los materiales utilizados actualmente en la capa externa, barrera de vapor y capa aislante interna de los trajes de protección dispongan de excelentes prestaciones, superando a los utilizados por los bomberos en un próximo pasado. Algunos de estos materiales son derivados de los empleados por los astronautas, pero debemos tener en cuenta que, en la lucha contra incendios, el ambiente hostil sobrepasa a las conocidas características del espacio exterior. Por ejemplo, la Nasa diseña los trajes para temperaturas que pueden oscilar desde –150°C a 121°C, mientras que el bombero puede experimentar un salto térmico entre –34°C, en los países nórdicos, hasta 1.000°C en una pos-llamarada de flashover. En el entrenamiento los astronautas pueden asimilar y comprender mejor los límites protectores de sus trajes que los bomberos, por cuya razón estos deben prepararse, en su entrenamiento básico, para usar de forma adecuada sus trajes y gestionar con cordura su exposición térmica, mediante efectivas y apropiadas tácticas y técnicas operativas.

Buena parte de la exposición, de los conceptos y datos que se exponen son fruto de los estudios desarrollados y publicados por el National Institute of Standards and Technology (NIST), así como lo propuesto en el clásico Gráfico de Hoeschke (figura 2) incluido en el reconocido proyecto Fires (USA), destinado a mejorar el diseño del vestuario de protección para los bomberos. En el gráfico se acotan tres áreas posibles de actuación.

  • Área A: correspondiente a condiciones rutinarias, en que la temperatura del aire no excede de 60 °C y un calor radiante máximo igual a la exposición solar (0,03 cal/cm².s).
  • Área B; relativo a condiciones peligrosas, con una temperatura ambiental que puede alcanzar hasta un máximo de 300°C, con un flujo de calor radiante de 0,2 cal/cm².s.
  • Área C: correspondiente a situaciones de emergencia, con una temperatura extrema de hasta 1.000°C y con un flujo térmico de 80 a 100 kW/m².

Figura 2: Gráfico de Hoeschke, donde se delimitan las condiciones de exposición del bombero en sus habituales intervenciones.

 Siguiendo estas bases se han especificado los trajes de protección para bomberos, tanto en el estándar NFPA 1971 (USA), como en la norma EN 469:2006. Por lo tanto cabe preguntarse: ¿Cuál es la causa de quemaduras en la piel y golpes de calor, sin observarse deterioros en la capa externa del traje? Pretendemos que cuanto se expone a continuación aporte razones y sea la adecuada respuesta.

Grados de las quemaduras térmicas

Desde el punto de vista de primeros auxilios, se clasifican las quemaduras de acuerdo a la extensión (o área) y a la profundidad (o grado) del tejido dérmico dañado. Los grados de las lesiones por quemaduras más comúnmente reconocidas se definen como:

  • Quemaduras de primer grado, que afectan a la capa superficial de la piel y la enrojecen, causando típicamente un desprendimiento laminar o ligera hinchazón.
  • Quemaduras de segundo grado, cuando se afecta la superficie de la piel y las capas contiguas del tejido, caracterizándose por formarse ampollas.
  • Quemaduras de tercer grado, cuando se destruyen las capas superficiales de la piel y se afectan capas más profundas de tejido. En el área afectada aparecen ampollas rotas y carbonizadas.

Las quemaduras de segundo y tercer grado se consideran lesiones muy serias porqué a menudo ocupan grandes áreas y constituyen heridas qué pueden potencialmente producir daños mayores. Si el área afectada supera el 10% de la superficie del cuerpo se considera particularmente grave y cuando se localiza en la zona de boca y cara puede interferir con la función respiratoria.Definidas las lesiones por quemaduras, es apropiado preguntarse: ¿A qué temperatura en la piel se producen? En la tabla A se especifica la estimada temperatura en que se inician las lesiones, para los diversos grados de quemaduras, las cuales sorprendentemente ocurren a una temperatura relativamente baja. A solo 7°C por encima de la temperatura del cuerpo notamos el dolor o la incomodidad. Una quemadura de segundo grado se inicia cuando la temperatura de la piel alcanza 55°C y se produce su destrucción instantánea cuando la temperatura es 35°C por encima de la corporal. Esto no significa que se produzca inmediatamente la quemadura, cuando la piel entra en contacto con un gas, líquido o superficie caliente, a las mencionadas temperaturas. Usualmente transcurre un corto tiempo para que la piel alcance la temperatura crítica que causa la quemadura.

 

Tabla A. Lesiones por quemadura, en función de la temperatura de la piel
Tipo de lesión Temperatura piel ºC
Dolor e incomodidad 44 ºC
Quemaduras de primer grado 48 ºC
Quemaduras de segundo grado 55 ºC
Quemaduras de tercer grado >55 ºC
Inmediata destrucción de la piel 72 ºC

 

Prolongadas exposiciones a estos ambientes térmicos o muy altas temperaturas podrán finalmente originar aumentos en la temperatura de la piel en los puntos críticos, cuando la disipación del calor por medios naturales que protegen a la piel no pueda mantener su eficacia, y entonces ocurre la quemadura. Las pérdidas de calor de la piel se controlan por el flujo sanguíneo a y desde la zona afectada, radiación térmica de la superficie expuesta y el sudor. En la figura 3 se indica la línea límite correspondiente a temperaturas críticas y tiempos de exposición para los que se producen quemaduras de segundo grado. El área encima de la curva representa el potencial para el incremento de los daños con el tiempo. Una vez que el traje protector del bombero se ha calentado y la temperatura de la piel alcanza los niveles peligrosos anteriormente indicados, es improbable que un bombero pueda inmediatamente sacarse el traje protector e iniciar el proceso de enfriamiento para evitar la consiguiente lesión.

Figura 3: Curva límite de temperaturas en piel y tiempo de exposición para quemaduras de segundo grado.

Prestaciones de los trajes de intervención

Los trajes de intervención utilizados actualmente por los bomberos, fabricados conforme a las especificaciones de las normas en USA (NFPA) y en Europa (EN), ofrecen unas elevadas prestaciones si se comparan con los modelos de algodón o neopreno utilizado hace tres décadas. Asimismo, el diseño contempla la comodidad para efectuar los movimientos del cuerpo en la intervención y otros importantes factores, tales como la transpiración para eliminar el sudor, pero que impide la penetración de líquidos.

Figura 4: Ensayo en muestra de los materiales del traje para determinar el índice de la transferencia del calor por llama.

Recordemos las prestaciones térmicas que se exigen a los materiales del traje para satisfacer los ensayos de certificación:

  • Resistencia a la llama (figura 4): el ensayo mide la transferencia de calor por la acción de una llama con intensidad equivalente a 80 kW/m², debiendo obtener un índice de transferencia HTL24 = 13.
  • Resistencia al calor radiante (figura 5): en este ensayo se mide la transferencia de calor por la exposición a una densidad de flujo radiante de 40 kW/m², siendo necesario un resultado para el índice de transferencia RHTL24 = 18.
  • Resistencia al calor de los materiales: para este ensayo se colocan, en una estufa con temperatura de 180°C, muestras de todos los materiales empleados en la confección del traje. Después de 5 minutos ningún material debe inflamarse o fundir y no debe encoger más de un 5% en dirección trama o urdimbre.

(Nota: los índices de transferencia indicados corresponden al tiempo medio en segundos, necesario para obtener un incremento en la temperatura de 24 °C, medida por el calorímetro).

Figura 5: Ensayo en muestra de los materiales del traje para determinar el índice de transferencia al calor por radiación.

Cabe señalar que tanto la vigente EN469:2006 como su esperada modificación proponen, para el traje completo que ha superado todos y cada uno de los requisitos mecánicos, físicos, químicos y térmicos, la recomendación para afianzar la confianza del usuario y fiabilidad del diseño, de ser ensayado opcionalmente sobre un maniquí instrumentalizado y expuesto, durante 8 segundos, a una inmersión en llamas con flujo uniforme ponderado de 80 kW/m², proporcionado por 8 mecheros de propano situados a su alrededor y a la altura de la rodilla (ver figura 6).

Figura 6: Maniquí Thermoman, con más de 100 sensores para determinar el área/grado de quemaduras, después del ensayo de inmersión en llamas, actualmente normalizado conforme a EN ISO 13506-1:2017.

 A pesar de estas excelentes prestaciones exigidas a los trajes de intervención de los bomberos, las estadísticas anuales publicadas en USA sobre quemaduras en bomberos no han descendido, lo cual puede ser debido a que la carga de fuego, intensidad y rapidez de desarrollo en los incendios de interiores, es ahora mayor debido a los modernos materiales utilizados en el mobiliario y elementos de construcción. Otro factor que coloca al bombero más cerca del foco térmico es el uso preceptivo del ERA en la extinción. Actualmente los bomberos con trajes protectores de avanzada tecnología y llevando ERA se aproximan al fuego y permanecen más tiempo en este ambiente térmico hostil. Esta mayor capacidad y eficacia en la lucha contra el fuego representa un peligro potencial para el bombero, al crearle falsas expectativas de seguridad, y posiblemente se sobrepasen los valores límite de protección que ofrecen las prendas, refrendadas sólo mediante ensayos en las condiciones de laboratorio.

Cómo ocurren las lesiones por quemaduras

La frecuencia en que ocurren lesiones por quemaduras, mientras que el traje de protección no presenta daños térmicos en su capa externa, es difícil de explicar. Asimismo, los golpes de calor también se reportan durante las intervenciones de los bomberos y han sido identificados como uno de los primordiales riesgos para la su seguridad. Unas y otros pueden suceder por varias causas, pero ciertos factores de transferencia del calor pueden ayudarnos a comprender principalmente las razones de las lesiones.

  • ¿Proporciona el traje protector un retardo suficiente en la transferencia de calor para permitir la entrada y salida de una zona caliente sin que ocurra una quemadura?
  • ¿Hubo un contacto directo con las llamas? En caso de lesiones sin aparente deterioro de la capa externa del traje, no hubo contacto con llamas. Las quemaduras se han producido por radiación térmica o contacto con superficie caliente
  • ¿Ha estado el traje protector comprimido sobre una superficie caliente?
  • ¿Estaba el traje protector mojado o seco?

En muchos casos se ha informado que las quemaduras, sin deterioros en el traje protector, eran debidas a lesión por vapor o escaldadura, pero análisis más detallados en la forma como el calor se transfiere a través del traje, demuestran que estas lesiones generalmente ocurren con anterioridad a la formación de vapor. Como se ha indicado anteriormente, las quemaduras de primero y de segundo grado ocurren a temperaturas de 48°C y 55°C, mientras que la completa destrucción de la capa dérmica sucede también a una baja temperatura de 72°C. Estas temperaturas son muy inferiores al punto de ebullición del agua (100°C), cuando se genera vapor. Las quemaduras producidas por el vapor son todavía más graves y peligrosas.La humedad en el traje protector puede ocasionar, según las condiciones, un beneficio o un riesgo. Con solo ligeros cambios en el ambiente térmico la humedad, que estaba protegiendo al bombero, le puede producir severas quemaduras. El problema reside en que el bombero no puede percibir estos cambios entre la humedad y el ambiente térmico, hasta que nota el dolor y se ha producido la lesión cutánea. La fuente de humedad interna es el sudor, cuya cantidad puede oscilar entre 1200 g/h y 1800 g/h, en función de la actividad desarrollada y el calor en el entorno de trabajo. Una vez la sudoración se ha iniciado, el bombero es susceptible de sufrir lesiones por quemaduras relativas a la humedad.

Tipos de lesiones por quemaduras

A continuación, se detallan varios supuestos y las correspondientes posibles causas que se estima pueden originar las lesiones por quemadura, cuando se utiliza el traje de protección en la intervención durante la lucha frente al fuego:

  • Por compresión estando el traje húmedo. El material del traje presenta una mayor ratio de transferencia del calor estando húmedo y comprimido, puesto que el aire entre capas y fibras es menor, por lo cual el valor de la transferencia térmica por conducción puede ser hasta 20 veces mayor. La compresión en partes del traje protector puede producirse de varias maneras, sin necesidad de tocar ninguna superficie, al flexionar brazos o piernas e incluso girando el cuerpo en una acción defensiva. Cuando se halla expuesto el bombero a altos niveles de calor radiante con la prenda mojada ocurren serias quemaduras por esta causa. Otra posible situación peligrosa se presenta al gatear sobre suelo o techos muy calientes, localizándose las lesiones en rodillas y piernas.
  • Al secarse la prenda húmeda. El traje protector húmedo durante la intervención frente al fuego, presenta evaporación con pérdida de calor que usualmente beneficia por su efecto refrigerante. Sin embargo, este falso bienestar puede llevarle a entrar en zonas demasiado peligrosas. La evaporación viene regulada en la forma siguiente: por un lado, la energía térmica recibida y la humedad ambiente y por otro el sudor que absorbe el material interior más el agua que recibe/retiene la capa externa del traje. Si aumenta el ratio de evaporación, sin un aumento de la aportación de líquidos, el traje se seca, cesando el efecto favorable de enfriamiento y al encontrarse el bombero demasiado cercano al fuego, la temperatura del tejido aumenta rápidamente y sin darse cuenta ha recibido serias lesiones. En el gráfico de la figura 7 se muestran los aumentos de temperatura de la capa externa del traje y del forro interno al evaporarse la humedad contenida. Es fácil deducir que en pocos segundos la piel puede sufrir importantes quemaduras.

(Nota: En los dos casos expuestos la capa externa del traje no ha experimentado daños ya que no ha ocurrido ningún contacto con llama. Generalmente suceden las lesiones expuestas por contacto con superficies muy calientes o frente a fuertes radiaciones térmicas).

Figura 7: Elevación de la temperatura en trajes húmedos al secarse durante la intervención de extinción.

 Quemaduras por vapor. Estas quemaduras se originan cuando el agua pulverizada se aplica contra las llamas o sobre superficies calientes y puede a menudo entrar en contacto con la piel no protegida de los bomberos, causando quemaduras. Asimismo, como gas puede atravesar la membrana permeable del traje y causar daño al licuarse, por el calor latente que se libera, si la condensación se produce cuando contacta con la piel.

  • Quemaduras por escaldamiento. El escaldamiento se produce cuando entra en contacto la piel con un líquido caliente por ejemplo agua de extinción que escurre del techo, rebota en las paredes o fluye por el suelo. Si esta agua alcanza la piel no protegida o se cuela por las aberturas del traje puede producir este tipo de lesiones.
  • Quemaduras con el traje seco. El material de la capa externa de los trajes de protección se degrada a temperaturas más altas de 250 °C, Si se compara con la temperatura de 72 °C en que la piel se destruye, no es raro suponer que se puedan producir quemaduras sin que la capa externa del traje seco presente deterioros.

Dolor en las lesiones por quemadura

Por lo anterior, queda patente que las lesiones por quemadura pueden originarse de modos muy diversos y por razones físicas inherentes a la transferencia del calor. En la tabla B, extraída del estándar ASTM C 1055, se indican detalles respecto a la temperatura de la piel y su relación con las lesiones producidas. Una vez que se nota la sensación de dolor en pocos segundos ocurre la quemadura, puesto que el remedio sería enfriar de inmediato la zona afectada, acción que usualmente no es posible realizar durante la actividad del bombero.

Tabla B: Temperaturas de la piel versus sensaciones, apariencia y lesión
Temperatura de la piel Sensación Color de la piel Proceso Lesión
72 ºC  

Insensibilidad

Blanca Coagulación de las proteínas Irreversible
68 ºC

62 ºC

Moteada roja y blanca Piel térmicamente inactiva Posible reversibilidad
60 ºC Dolor máximo Rojo fuerte  

 

Reversible

52 ºC Dolor serio
48 ºC Dolor Rojizo
44 ºC Frontera del dolor
40 ºC Calor Ruboroso Metabolismo normal Ninguna

 

El concepto de tiempo de alarma, desde la sensación de dolor hasta producirse la quemadura de segundo grado, es aplicable en condiciones de laboratorio y no es factible determinarlo en condiciones reales, por lo cual cabe recomendar lo siguiente:

  • Cuando se nota el dolor, debe asumirse que se ha producido la quemadura y su severidad será función de la carga de fuego, la energía absorbida por la piel y el tiempo restante de exposición.
  • Cuando se nota dolor, la permanencia en el lugar incrementará la gravedad de la lesión y aumentará el área afectada.
  • Si el bombero es capaz de abandonar la zona peligrosa, el calor retenido en el traje protector, incrementará la lesión hasta que se saque el traje y mientras mantenga la temperatura en la piel igual o mayor de 44 °C.
  • Si se aplica spray de agua sobre el bombero para apagar las llamas sobre el traje o enfriar las quemaduras, mientras permanece en el ambiente térmico, corremos el riesgo de producir quemaduras por escaldamiento. Se precisa una copiosa ducha sobre el traje y la piel para, en zona sin calor, ser eficaz y evitar la producción del peligroso vapor.

Por lo indicado, se sugiere que cualquier bombero que note dolor frente a una exposición térmica, el tiempo para mejorar tácticas e impedir la lesión ha pasado, solamente le cabe tomar de inmediato las acciones oportunas para reducir el riesgo de agravar el daño.

Detalle de los nuevos ensayos sobre el traje

Para comprender las prestaciones térmicas de un traje protector de bomberos se debe, ante todo, medir el entorno térmico alrededor del bombero en diversos puntos mientras está efectuando su trabajo de extinción. Las mediciones de la radiación térmica, el flujo total de calor y la temperatura del gas se utilizan para cuantificar estos entornos de actuación. Además, el impacto del entorno sobre el bombero se mide mediante instrumentos colocados en el propio vestuario de protección, tanto en las capas exteriores como en el interior de las prendas. La medición interna señala no solo como penetra el calor a través de los materiales de protección, sino también clarifica como la humedad retenida evoluciona con el tiempo de exposición al calor. Las mediciones se efectúan típicamente con termopares, termistores y pequeños sensores de flujo.

Los trabajos efectuados por el NIST, para identificar necesidades de medición y poder disponer de una mejor comprensión de la protección térmica utilizada por los bomberos, han conducido al desarrollo de nuevos métodos de ensayo que permiten la medición de las prestaciones térmicas del material de los trajes en seco o húmedo y también los cambios que aparecen al comprimir la prenda.

Estimo interesante detallar la prueba que efectúan en Suecia a los trajes de intervención para bomberos. Si bien siguen las especificaciones de las normas CE, añaden un requisito práctico conforme a la NT FIRE 052, que ensaya el traje protector en condiciones reales dentro de un entorno térmico. Utilizan un contenedor de 40 pies, dividido en tres compartimentos, efectuando el ensayo en la zona central de dimensiones 6,5 x 2,3 x 2,25 m de ancho, con las condiciones de prueba siguientes:

  • Temperatura del aire a 1,2 y 2,2 m del suelo: 250 °C y 320 °C respectivamente.
  • Flujo medio de calor a 1,2 m del suelo: 5,0 kW/ m².
  • Fuente de calor: dos quemadores de gas propano a distinta altura
  • La persona lleva 6 sensores de temperatura sobre la piel; uno en la parte externa de cada brazo, uno en cada pantorrilla y uno en cada muslo.
  • Los parámetros de temperatura del aire y flujo de calor son totalmente controlados y la prueba vigilada, para intervenir si la persona nota dolor o malestar, pudiendo interrumpirse el ensayo de forma inmediata. Por razones de seguridad el probador llevará un controlador del ritmo cardíaco.

El ensayo se efectúa con una persona entrenada e instruida, vistiendo EPI certificados (traje de intervención que se prueba, guantes, botas, casco y ERA completo con máscara), la cual realiza un recorrido por el interior de la zona caliente del contenedor, durante 5 minutos, adoptando durante unos segundos las posturas que a continuación se indican (figura 8):

  • Entrar y mantenerse erguido, durante 30 segundos.
  • Avanzar un paso y sentarse, durante 15 segundos.
  • Colocarse de pié sobre los 2 palés, durante 15 segundos.
  • Bajar y tumbarse sobre el suelo, durante 30 segundos.
  • Subirse sobre el palé y mantenerse erguido, durante 15 segundos.
  • Bajar y arrodillarse manteniendo la postura, durante 30 segundos.
  • Dar un paso y erguido sobre el suelo permanecer, durante 15 segundos.
  • Darse la vuelta y permanecer de pie, durante 15 segundos y después repetir, en el recorrido de vuelta, idénticas posturas con los mismos tiempos.

Figura 8: Esquema en planta del contenedor usado para ensayar prácticamente los trajes de intervención en Suecia.

Los criterios de aceptación para el traje de protección son los siguientes:

  • Durante el recorrido la persona no debe notar dolor en ningún momento de la prueba.
  • Las temperaturas máximas alcanzadas en los sensores sobre la piel no deben exceder de 47°C en ningún momento de la prueba ni al finalizar la misma.
  • El traje de intervención será inspeccionado, siguiendo las recomendaciones del fabricante, anotando cualquier desperfecto que se observe.

El probador sale de la zona caliente y permanece con los EPI colocados hasta que la temperatura en los sensores sobre la piel empiece a descender. El informe del ensayo especifica la identificación del traje, el probador y el desarrollo del ensayo e indica las temperaturas máximas de cada sensor y las observaciones del probador.

Conclusión

A lo largo del artículo se ha intentado exponer los criterios que explican el fenómeno de las lesiones por quemadura que sufren los bomberos, sin que sus trajes de protección presenten visibles deterioros térmicos, todo ello basado en los reseñados estudios de laboratorio y en condiciones prácticas realizadas por el NIST.Esta información va dirigida a los bomberos para que reflexionen y tomen conciencia de las limitaciones en protección que ofrecen sus trajes de intervención, en determinadas ocasiones, y confío que se pueda aplicar adecuadamente, durante las prácticas de instrucción y en las técnicas de lucha contra incendios, a fin de evitar las lesiones por quemaduras.

 

Bibliografía

  • Thermal performance and limitations of bunker gear. J. Randall Lawson
  • Thermal Measurements for fire fighters protective clothing. ASTM standars and papers for J.R. Lawson & R.L. Vitori
  • NFPA 1971 ‘Protective ensemble for structural Fire’.
  • UNE EN 469: 2006 ‘Vestuario de protección para bomberos estructurales’.
  • NT FIRE 052.- Complete Suit Test in hazardous conditions.
  • Normativa UNE EN actualizada por gentileza de Asepal.

https://www.interempresas.net/Proteccion-laboral/Articulos/219722-La-UNE-EN-469-no-basta.html

 

Posted in Equipos de intervencion, Equipos proteccion, Leg. Riesgos Laborales, Legislacion, Quemaduras, Salud Laboral. Prevencion de riesgos | Comentarios desactivados en ¡La UNE EN 469 no basta!

Manual basico bomberos de nuevo ingreso IVASPE

Posted by Firestation en 11/07/2018

Posted in Agentes Extintores, Bombas, Desastres Naturales, Descarcelacion, Edificacion, Equipos proteccion, Hidraulica, Incendios, Legislacion, Manuales, Materiales, MM.PP., Prevencion, Primeros Auxilios, Rescate, Sistemas fijos de extincion, Tecnicas de Intervencion, Teoria del fuego | 2 Comments »

Manuales y Procedimientos Bomberos Bilbao.

Posted by Firestation en 09/05/2018

Posted in Descarcelacion, Equipos proteccion, Mando y control, Manuales, MM.PP., Rescate, Riesgo Quimico, Tecnicas de Intervencion, Teoria del fuego, Vehiculos | 2 Comments »

Recomendaciones para la selección y el uso de respiradores y ropa protectora contra agentes biológicos.

Posted by Firestation en 20/09/2017

El enfoque para hacerle frente a cualquier tipo de riesgo potencial en el ambiente, incluido el que representan los riesgos biológicos, se debe realizar mediante un plan que incluya una evaluación del riesgo y de la exposición potencial, las necesidades de protección respiratoria y cutánea, las formas de penetración del contaminante, las rutas de salida y las estrategias de descontaminación. Los planes relacionados con los riesgos biológicos deben fundamentarse en las recomendaciones relevantes sobre enfermedades infecciosas o de seguridad biológica expedidas por los Centros para el Control y Prevención de Enfermedades y otras organizaciones de expertos que incluyan personal de emergencia de respuesta inmediata, funcionarios del orden público y de salud pública. La necesidad de brindar tratamiento al personal de emergencia de respuesta inmediata previo y posterior a la exposición mediante antibióticos, vacunas y otros medicamentos debe determinarse en consulta con personal médico autorizado.

Este documento se fundamenta en la información que se tiene en la actualidad sobre los agentes potenciales y las recomendaciones existentes sobre los agentes aerosoles y tiene un enfoque orientado en los actos de terrorismo. Las recomendaciones que se ofrecen en este documento no abordan y no se aplican al uso controlado de agentes biológicos en laboratorios de bioseguridad. Para obtener información sobre las precauciones a seguir en entornos de laboratorio.

Las recomendaciones que NIOSH hace en este documento se basan en las siguientes consideraciones:

  • Las armas biológicas pueden exponer a los trabajadores a bacterias, virus o toxinas en forma de partículas diminutas aerotransportadas. Los agentes biológicos pueden infectar a las personas a través de uno o más de los siguientes mecanismos de exposición dependiendo del tipo de agente específico: (1) inhalación, con infección a través del contacto con la mucosa respiratoria o tejidos pulmonares; (2) ingestión; (3) contacto con las membranas mucosas de los ojos o tejidos nasales o (4) penetración de la piel a través de lesiones o excoriaciones.
  • Los agentes biológicos, como partículas orgánicas líquidas o sólidas aerotransportadas, se comportan de igual manera en el aire que las partículas inertes o inorgánicas debido a que comparten las mismas características aerodinámicas.
  • Debido a que las armas biológicas vienen en forma de partículas, no penetrarán los materiales utilizados para la fabricación de respiradores o de ropa protectora en la misma forma que lo hacen algunas sustancias químicas que se pueden filtrar a través de ellos. Sin embargo, existe la posibilidad de que las partículas biológicas puedan penetrar a través de las costuras, cierres, interfases, poros y espacios del equipo o ropa protectora. Es esencial prestar atención especial a la selección adecuada, ensamblado y ajuste del equipo de protección personal (PPE, por sus siglas en inglés) para garantizar la protección necesaria del personal de emergencia de respuesta inmediata.
  • Algunos dispositivos utilizados intencionalmente en el terrorismo biológico pueden tener la capacidad de dispersar grandes cantidades de materiales biológicos en aerosol. Será necesaria la utilización de altos niveles de protección (es decir, conjuntos de equipos y vestimentas de protección de Nivel A) cuando el riesgo y los niveles de concentración de sustancias aerotransportadas no se conozcan o se prevea que sean altos. El uso de equipos PPE que ofrezcan niveles menores de protección (es decir, conjuntos de equipos y vestimentas de protección de Nivel B o C) por lo general, se permite una vez que se conozcan las condiciones y se determine que los niveles de exposición son más bajos.
  • Se recomienda que el personal de respuesta a emergencias use el siguiente equipo cuando exista un riesgo potencial debido a un posible incidente terrorista: respiradores aprobados por NIOSH para el uso en incidentes con sustancias químicas, biológicas, radiológicas y nucleares (CBRN, por sus siglas en inglés) junto con el uso de conjuntos de equipos y vestimentas de protección certificados por las normas establecidas por la Asociación Nacional de Protección contra Incendios (National Fire Protection Association o NFPA). Los respiradores y conjuntos de equipos y vestimentas de protección certificados para la protección contra las CBRN se han evaluado con agentes químicos de guerra para verificar que los materiales con que están hechos sean resistentes a la penetración y filtración (p. ej., materiales como goma, material elastomérico, barreras y de penetración selectiva). Los respiradores contra las CBRN ofrecen un alto nivel de protección contra las sustancias peligrosas aerotransportadas cuando se ajustan adecuadamente a la cara del usuario y se usan en forma apropiada de acuerdo a un programa de protección respiratoria que siga las normas de la Administración de Seguridad y Salud Ocupacionales (OSHA).
  • En un caso de liberación intencional de un agente biológico se podrían presentar en forma simultánea o secundaria liberaciones de otro tipo de sustancias peligrosas como sustancias químicas. Por lo tanto, al seleccionar los niveles adecuados de protección de los PPE se debe tener en cuenta la información concerniente a posibles exposiciones a sustancias peligrosas no biológicas.

Directrices y normas relacionadas con la selección y el uso de respiradores y ropa protectora

El uso de los equipos de protección respiradora y otros PPE debe realizarse dentro del contexto de un programa integral o de un sistema de comando de incidentes que incluya un programa de salud y seguridad. El programa debe tener los siguientes elementos:

  • Análisis de la seguridad en el trabajo y un plan de salud y seguridad.
  • Programa de vigilancia y monitoreo clínico de la salud y seguridad (vigilancia por fatiga, estrés por calor, salud conductual y otros elementos que se consideren apropiados, en el sitio de trabajo).
  • Plan de vacunación antes de la exposición y vigilancia médica y profilaxis del personal después de la exposición.

Cuando se use protección respiratoria, se debe escoger el tipo de respirador de acuerdo al riesgo y la concentración de las partículas aerotransportadas. Se ofrecen recomendaciones para la selección de respiradores en el documento de NIOSH Respirator Selection Logic 2004 [DHHS (NIOSH) Publicación No. 2005-100]. Además, se pueden consultar recomendaciones específicas para incidentes con CBRN en el documento guía de NIOSH Guidance on Emergency Responder Personal Protective Equipment (PPE) for Response to CBRN Terrorism Incidents [DHHS (NIOSH) Publicación No. 2008-132].

En caso de un agente biológico, la concentración de partículas en el aire dependerá del método utilizado para liberar al agente, la cantidad inicial del agente en el aparato de dispersión, el tamaño de la partícula (las partículas muy pequeñas permanecerán suspendidas en el aire por periodos prolongados, mientras que las partículas grandes caerán con más rapidez) y el tiempo transcurrido desde su liberación. La aerosolización adicional secundaria generada por la perturbación del área contaminada puede contribuir a un aumento de la concentración de partículas en el aire. Los aparatos de respiración autónoma (SCBA) contra las CBRN aprobados por NIOSH, que son usados en la actualidad por muchos miembros del personal de emergencia de respuesta inmediata para entrar en ambientes de riesgo potencial, ofrecerán al personal protección respiratoria contra exposiciones a agentes biológicos asociados a presuntos actos de terrorismo biológico. Si las concentraciones de partículas en el sitio permiten el uso de niveles de protección más bajos, se podrán usar respiradores purificadores de aire (APR, por sus siglas en inglés) con pieza facial completa contra las CBRN o respiradores con purificador de aire motorizado (PAPR, por sus siglas en inglés) con pieza facial completa contra las CBRN.

El uso de ropa de protección que incluya vestimenta, guantes y recubrimientos para calzado, también será necesario en las actividades de respuesta a presuntos actos de terrorismo biológico para reducir la exposición a riesgos potenciales cutáneos, químicos y físicos. La ropa de protección debe tener características físicas que brinden la adecuada protección de acuerdo a la misión (p. ej., resistencia a la tensión, resistencia a las perforaciones, refuerzo contra roturas en las costuras, resistencia a la abrasión). La ropa de protección se utiliza para prevenir la exposición de la piel o la contaminación de otras vestimentas. El tipo de ropa de protección dependerá del agente biológico, su concentración, la ruta de exposición y las actividades de trabajo anticipadas.

La norma NFPA 1994 sobre equipos de protección para personal de emergencia de respuesta inmediata ante incidentes terroristas con CBRN (Standard on Protective Ensembles for First Responders to CBRN Terrorism Incidents) edición 2007); la norma NFPA 1991 sobre equipos de protección contra vapores en emergencias con materiales peligrosos (Standard on Vapor Protective Ensembles for Hazardous Materials Emergencies), edición 1995; la norma NFPA 1999 sobre ropa de protección para operaciones de emergencia médicas (Standard on Protective Clothing for Emergency Medical Operations), edición 2008 han sido aceptadas a nivel nacional y adoptadas por el Departamento de Seguridad Nacional (Department of Homeland Security o DHS) como estándares válidos de desempeño. Los equipos de protección certificados según estas normas deben considerarse como la primera opción al seleccionar la ropa de protección contra agentes biológicos. Los conjuntos de equipos y vestimentas de protección certificados según estas normas pueden usarse para cumplir con los niveles de protección correspondientes (p. ej., A, B, C y D) indicados por OSHA en el Apéndice B de las Normas de Operaciones para el Manejo de Desechos Peligrosos y la Respuesta a Emergencias (HAZWOPER). Hay otros conjuntos de equipos de protección y prendas de vestir que se venden a nivel comercial que cumplen con las especificaciones de OSHA y que ofrecen protección contra agentes biológicos. Se puede consultar información detallada sobre las normas de la NFPA con relación a incidentes terroristas con CBRN.

La norma NFPA 1999 sobre ropa de protección para operaciones de emergencias médicas, edición 2008, especifica los requerimientos de diseño, desempeño y certificación de la ropa de protección que incluye prendas de vestir, cascos, guantes, calzado y aparatos de protección facial usados por el personal de respuesta a emergencias y el personal médico de primera línea. Esta norma incluye los requisitos para conjuntos de equipos y vestimentas de protección de múltiples usos para emergencias médicas que proporcionen una protección mínima para el tronco, la cabeza, las manos y la cara contra los agentes biológicos. Se debe considerar el uso de conjuntos de equipos y vestimentas de protección certificados según la norma NFPA 1999 para obtener protección contra agentes biológicos.

Recomendaciones para la selección y el uso de respiradores y la ropa protectora contra agentes biológicos a causa de un incidente terrorista presunto o real

Las recomendaciones para la selección del equipo de protección personal, que incluya protección respiratoria y ropa protectora, se deben realizar de acuerdo al nivel anticipado de riesgo de exposición asociado a diversas situaciones de respuesta a emergencias, según lo siguiente:

  • El personal de respuesta debe usar aparatos de respiración autónoma contra las CBRN aprobados por NIOSH, junto con conjuntos de equipos y vestimentas de protección Nivel A (se debe utilizar el equipo certificado de acuerdo a la norma NFPA 1991 como primera opción si está disponible) en las operaciones de respuesta a presuntos incidentes con agentes biológicos, en casos en que el incidente esté fuera de control o se conozca cualquiera de la siguiente información:
    • El tipo de agente o agentes aerotransportados.
    • El método o métodos de dispersión.
    • La dispersión por medio de un aparato de generación de aerosoles todavía está ocurriendo o se ha detenido pero se desconoce la duración de la dispersión o el nivel de concentración de la exposición.
    • Otras condiciones que puedan presentar un riesgo por vapor o salpicadura.
  • El personal de respuesta puede usar conjuntos de equipos y vestimentas de protección de Nivel B (se debe usar como primera opción, si está disponible, un equipo certificado según la norma NFPA 1994 de Clase 2, NFPA 1992 o NFPA 1971 sobre conjuntos protectores contra las CBRN) con aparato de respiración autónoma contra CBRN certificados por NIOSH si la situación se puede definir como una en que:
    • El presunto agente biológico en aerosol ya no está siendo generado.
    • Otras condiciones pueden presentar riesgos adicionales como el riesgo de salpicaduras. (Nota: La norma NFPA 1994 Clase 4 no tiene requerimientos para ofrecer una protección limitada contra peligros por sustancias líquidas o químicas).
  • El personal de respuesta puede usar conjuntos de equipos y vestimentas de protección de Nivel C (se debe usar como primera opción, si está disponible, un equipo certificado según la norma NFPA 1994 de Clase 3 o 4 o conjuntos de vestimentas de protección según la norma NFPA 1999) con un respirador purificador de aire con pieza facial completa contra las CBRN o un respirador con purificador de aire motorizado con pieza facial completa contra CBRN, cuando se determine lo siguiente:
    • El presunto agente biológico en aerosol ya no está siendo generado.
    • Se ha identificado el agente biológico y el nivel de riesgo.
    • El método de dispersión fue una carta o un paquete que se puede colocar en una bolsa fácilmente.

Si se ha realizado una evaluación del riesgo por parte de expertos de salud y seguridad calificados, el personal de respuesta puede usar otro equipo de protección personal como conjuntos de equipos y vestimentas de protección de Nivel C con un respirador de partículas con pieza facial completa (filtros N100 o P100) o respirador con purificador de aire motorizado con filtros de partículas de gran eficiencia (HEPA), junto con overoles con capucha, guantes y cubiertas de calzado, según sea necesario.

En ciertas situaciones especiales, se debe considerar el uso de respiradores con filtro de mitad de cara en conjunto con niveles menores de protección dérmica, pero se debe tener en cuenta que este nivel de equipo de protección personal puede en muchos casos no reducir lo suficiente la exposición. Se deben evaluar varios parámetros cuando se tome la decisión de disminuir el nivel de protección de los conjuntos de equipos y vestimentas. Entre estos se incluyen: conocimiento de la fuente o grado de contaminación, nivel de incertidumbre en la evaluación de riesgo, actividades específicas a realizar, experiencia del investigador, planes de contingencia o refuerzo, permanencia en el área contaminada, previsiones para la vacunación o profilaxis después de la exposición, etc. Una decisión de esta naturaleza debe evaluarse cuidadosamente y ser tomada por un grupo de personal médico, de seguridad y de higiene industrial en conjunto con el comandante encargado de la operación y otras autoridades de salud pública apropiadas.

NIOSH recomienda no usar los uniformes estándar para bomberos en áreas posiblemente contaminadas cuando se responda a reportes de ataques terroristas con agentes biológicos, siempre y cuando no existan otros riesgos que requieran el uso de los uniformes de bomberos.

La descontaminación adecuada del equipo y la ropa de protección garantizará que cualquier partícula que haya quedado en la parte exterior del equipo de protección sea removida antes de quitarse el equipo y la vestimenta. Las secuencias de descontaminación que se usan en la actualidad para las emergencias con materiales peligrosos deben usarse de acuerdo con el nivel de protección empleado y al agente específico. Por ejemplo, el equipo de protección personal puede descontaminarse con agua y jabón y una solución de hipoclorito al 0.5% (una parte de blanqueador con cloro casero por 10 partes de agua) con un tiempo de contacto adecuado. Tenga en cuenta que el blanqueador con cloro puede dañar algunos tipos de vestimentas de bomberos (esta es una de las razones por la que estas no deben usarse en actividades de respuesta a emergencias con agentes biológicos). Después de desvestirse y quitarse el equipo, el personal de respuesta a emergencias debe ducharse con cantidades abundantes de agua y jabón. No se debe usar blanqueadores con cloro para descontaminar al personal de respuesta a emergencias. Tenga en cuenta que se prevé que todos los conjuntos de equipos y vestimentas de protección según la norma NFPA 1994 se utilicen y se desechen después de una sola exposición.

Posted in Equipos proteccion, Materiales, MM.PP., NBQ, Riesgo Quimico, Salud Laboral. Prevencion de riesgos | Comentarios desactivados en Recomendaciones para la selección y el uso de respiradores y ropa protectora contra agentes biológicos.

H41 Interceptor Hood with DuPont Nomex Nano-Flex Technology

Posted by Firestation en 01/10/2016

fire-dex-h41-interceptor-hood

nomex nano flex

NFPA 1971 compliant hood, the H41 Interceptor™, designed to keep potentially carcinogenic particulates and other harmful contaminants off of firefighters’ jaws, faces, and necks;  areas identified as highly absorptive and more permeable than other areas of skin(1), and are likely not getting enough protection from hazardous particles with the FR knit hood technology that is currently available(2).

Fire-Dex will be donating $5 per hood to the Firefighter Cancer Support Network for every H41 Interceptor™ sold this week during FDIC.

The development of this hood was inspired by the reports referenced above; the Firefighter Cancer Support Network Report(1) and the FAST Test Report, Commissioned by the IAFF(2).  The first report stated that firefighters  have a “significantly increased risk… for a number of cancers, including multiple myeloma, nonHodgkin’s lymphoma and prostate and testicular cancer” (1).  This report also discussed that soot and smoke particles readily absorb and hold liquid and gaseous chemicals, that “soot has ultrafine particles that… [are] also absorbed through the skin traveling to most organs including the brain”(1), and that skin adsorption rate increases 400% with every 5°F increase in skin temperature. (1) The FAST Test Report demonstrated that particles at 2.5 micron size penetrated the standard FR knit hood (soot and smoke particles are usually 1 micron or less) and left a concentrated, heavy deposit on the subject’s neck, cheeks, ears and jaw.

The H41 Interceptor™ Hood was developed in collaboration with DuPont™, utilizing their revolutionary new material, DuPont™ Nomex® Nano-Flex, that can block fine particulates almost as well as an impermeable membrane.  Unlike FR moisture barrier membranes however, this new lightweight (0.8oz/yd2), “barely-there” material is actually completely breathable; Nomex® Nano-Flex is a non-woven, web technology, made of submicron continuous fibers.  The H41 Interceptor™ Hood is constructed with Nomex® Nano-Flex sewn between two layers of  6.0oz/yd2 PBI®/Lenzing to provide the maximum performance for particle barrier filtration, comfort, breathability, thermal protection and protection in flashover condition.  The H41 Interceptor™ is patterned to protect the integrity of the filtration system and uniquely designed to promote easy donning and doffing from the stowed position to the SCBA face piece channel.

The H41 Interceptor™ blocks 95% of particulates at .2 micron in size or larger.  For perspective, there are 25,4000 microns in one inch and a human hair is about 75-100 microns wide, so a .2 micron particulate is about 500x smaller than a strand of hair.  Testing has shown that the particulates sized at less than .2 microns don’t have enough mass to make it through the double layer knit and the Nomex® Nano-Flex; essentially meaning that this hood blocks 100% of particulates less than .2 microns.

This chart demonstrates the remarkable difference in particulate blockage from a standard FR Knit Hood to an FR Knit Hood with Nomex® Nano-Flex (measuring from 0.5 – 0.2 microns).

The air permeability of the Nomex® Nano-Flex is far superior to all FR moisture barrier films that others are offering.  Standard FR moisture barriers are a necessity in turnout gear, where gear can often get wet and such a membrane is necessary to prevent steam burns.  With bare skin being against the hood, and with the head and face generating considerably more sweat than most other areas of the body, breathability is an absolute must.  Using  Nomex® Nano-Flex instead of a standard FR moisture barrier greatly reduces the potential for heat stress.

Posted in Equipos de intervencion, Equipos proteccion, Incendios, Marcas Comerciales | Comentarios desactivados en H41 Interceptor Hood with DuPont Nomex Nano-Flex Technology

Guia practica para la eliminacion de agentes quimicos en el servicio de extincion de incendios

Posted by Firestation en 06/05/2016

image064ti

Posted in Equipos proteccion, Incendios, Prevencion | Comentarios desactivados en Guia practica para la eliminacion de agentes quimicos en el servicio de extincion de incendios

Asientos de seguridad para vehiculos de bomberos.

Posted by Firestation en 16/04/2016

Crews-Seat-400x564image118

Posted in Equipos proteccion, Marcas Comerciales, Vehiculos | Comentarios desactivados en Asientos de seguridad para vehiculos de bomberos.

Curso sobre técnicas de supervivencia en intervención, situaciones “ Mayday ” y control del aire.

Posted by Firestation en 09/03/2016

image047

Posted in E.R.A., Incendios, Rescate, Tecnicas de Intervencion | 3 Comments »

Proyecto de formacion libre para bomberos. Temario manuales de formacion bomberos CEIS Guadalajara.

Posted by Firestation en 17/01/2016

Todos los documentos propios que aquí se publican, se encuentran protegidos por una licencia Creative Commons del tipo BY-NC-SA, de forma que se permite su copia, distribución, comunicación y transformación, siempre que se acredite su autoría (CEIS Guadalajara y colaboradores correspondientes), no se utilice con fines comerciales y la obra o sus transformaciones se compartan bajo una licencia idéntica a ésta.

 

Posted in Agentes Extintores, Equipos proteccion, Fisica y Quimica del Fuego, Formacion, Hidraulica, Incendios, Manuales, Materiales, MM.PP., Primeros Auxilios, Rescate, Riesgo Electrico, Riesgo Nuclear, Riesgo Quimico, Sistemas fijos de extincion, Tecnicas de Intervencion, Teoria del fuego | 1 Comment »

Guía técnica para la evaluación y prevención de los riesgos para la utilización por los trabajadores en el trabajo de equipos de protección individual.

Posted by Firestation en 15/12/2015

guia equipos proteccion

Posted in Equipos proteccion, Leg. Riesgos Laborales, Legislacion, Manuales | Comentarios desactivados en Guía técnica para la evaluación y prevención de los riesgos para la utilización por los trabajadores en el trabajo de equipos de protección individual.

EPI para la lucha contra incendios forestales. Resumen normativo.

Posted by Firestation en 04/12/2015

legis forestal

Posted in Equipos proteccion, Incendios, Incendios Forestales, Legislacion | Comentarios desactivados en EPI para la lucha contra incendios forestales. Resumen normativo.

Directivas Europeas relacionadas con la Seguridad e Higiene en el Trabajo que afectan a bomberos.

Posted by Firestation en 15/11/2015

ADESIVO_M_1

Requisitos esenciales y uso de EPI

  • Requisitos esenciales. Directiva 89/686/CEE.  Directiva estrechamente relacionada con la 89/656/CEE que se ocupa de los requisitos esenciales que deben reunir los EPI para su puesta en el mercado comunitario.

  • Uso de EPI. Directiva 89/656/CEE. Directiva que trata sobre los requisitos mínimos de Salud y Seguridad para el uso de los trabajadores de EPI en el lugar de trabajo.
    • Epi para Trabajo en altura. Directiva 2001/45/CE. Disposiciones relativas a la utilización de los equipos de trabajo para la realización de trabajos temporales en altura

Agentes químicos

Agentes físicos

  • Radiaciones ionizantes. Directiva 96/29/Euroatom. Directiva relativa a la protección operacional de los trabajadores exteriores con riesgo de exposición a radiaciones ionizantes por intervención en zona controlada.

Agentes biológicos

Posted in Botas, Cascos, E.R.A., Equipos de intervencion, Equipos proteccion, Guantes, Leg. Riesgos Laborales, Legislacion | Comentarios desactivados en Directivas Europeas relacionadas con la Seguridad e Higiene en el Trabajo que afectan a bomberos.

Prevencion de cancer en bomberos.

Posted by Firestation en 25/10/2015

ThoseCoolCarcinogens¿Lavar el equipo? ¡Pero entonces todos estos cancerigenos molones desapareceran!

NIOSH Study of Firefighters Finds Increased Rates of Cancer

A combined population of 30,000 firefighters from three large cities had higher rates of several types of cancers, and of all cancers combined, than the U.S. population as a whole, researchers from the National Institute for Occupational Safety and Health (NIOSH) and colleagues found in a new study.

The new findings are generally consistent with the results of several previous, smaller studies. Because the new study had a larger study population followed for a longer period of time, the results strengthen the scientific evidence for a relation between firefighting and cancer, the researchers said.

The findings were reported in an article posted on-line on Oct. 14, 2013, by the peer-reviewed journal Occupational and Environmental Medicine. The article is available online at http://oem.bmj.com/content/early/2013/10/14/oemed-2013-101662.full .

http://www.firefightercancersupport.org/wp-content/uploads/2013/10/NIOSH-Firefighter-Cancer-Study-w-Summary.pdf

The researchers found that:

  • Cancers of the respiratory, digestive, and urinary systems accounted mostly for the higher rates of cancer seen in the study population. The higher rates suggest that firefighters are more likely to develop those cancers.
  • The population of firefighters in the study had a rate of mesothelioma two times greater than the rate in the U.S. population as a whole. This was the first study ever to identify an excess of mesothelioma in U.S. firefighters. The researchers said it was likely that the findings were associated with exposure to asbestos, a known cause of mesothelioma.

The study analyzed cancers and cancer deaths through 2009 among 29,993 firefighters from the Chicago, Philadelphia, and San Francisco fire departments who were employed since 1950. The study was led by NIOSH in collaboration with the National Cancer Institute and the Department of Public Health Sciences in the University of California at Davis. The study was supported in part by funding from the U.S. Fire Administration.

Firefighters can be exposed to contaminants from fires that are known or suspected to cause cancer. These contaminants include combustion by-products such as benzene and formaldehyde, and materials in debris such as asbestos from older structures.

The findings of the new study do not address other factors that can influence risk for cancer, such as smoking, diet, and alcohol consumption. In addition, few women and minorities were in the study population, limiting the ability to draw statistical conclusions about their risk for cancer.

In a second phase of the study, the researchers will further examine employment records from the three fire departments, to derive information on occupational exposures, and to look at exposures in relation to cancer incidence and mortality. Those findings, when completed, will be published in a future article.

cartel_prevencionwebTamaño completo.

Solicitud descontaminación de EPIs

prl1

http://www.prlbomberos.com/

Health-SCBA-During-Overhaul“El ERA durante la revision final es de blandos. Ademas, ¿que es lo peor que puede pasar?”

Posted in Equipos de intervencion, Equipos proteccion, Prevencion | Comentarios desactivados en Prevencion de cancer en bomberos.

Normas UNE. Normas tecnicas de ropa y guantes de proteccion.

Posted by Firestation en 06/09/2015

normas UNE

Posted in Equipos de intervencion, Equipos proteccion, Guantes, Leg. Riesgos Laborales, Legislacion | Comentarios desactivados en Normas UNE. Normas tecnicas de ropa y guantes de proteccion.

Riesgos de la Contaminación de los EPI

Posted by Firestation en 01/09/2015

Por gentileza del Bombero Nº13

image113

image108

Posted in Equipos de intervencion, Equipos proteccion | 1 Comment »

 
A %d blogueros les gusta esto: